
Multi-Sample Interpolation Training Method
Daojun Liang

Shandong Normal University
Jinan 250014, Shandong Province,

China
15154121592, 86

liangdaojun@stu.sdnu.edu.cn

Feng Yang
Shandong Normal University

Jinan 250014, Shandong Province,
China

15098738282, 86

yangfeng@sdnu.edu.cn

Xiuping Wang
Shandong Normal University

Jinan 250014, Shandong Province,
China

18366133950, 86

wangxiuping@stu.sdnu.edu.cn

ABSTRACT

The mixup training method has achieved a better generalization

performance than the traditional training method. But there is no

interpretation to why mixup has such a good generalization. In

this paper, a series of ablation experiments were first done to

prove that the training method of mixup is equivalent to a

regularization and data augmentation. Then, we propose several

different multi-sample training methods as variations of the mixup,

which can also achieve comparable performance with mixup. This

method shows that the different mixing methods can achieve the

same effect as the original mixup training method. Next, a

network architecture that can classify multiple samples at the

same time is being proposed. The network architecture prove that

mixup does not only learn a linear interpolation between the two

categories, but learns to separate the two categories more

accurately. Finally, through the fineturning of mixup, the training

precision can be further improved.

CCS Concepts

• Computing methodologies➝Machine learning➝Machine

learning approaches➝Neural networks.

Keywords

Convolutional Neural Network; Neural Network; Deep Learning

1. INTRODUCTION
Convolutional neural networks have made great progress in many

fields, and the research of the network architecture has never

stopped. AlexNet [1] is the first to demonstrate the generalization

ability of convolutional neural networks on large data. VGGNets

[2] show that better performance can be achieved with smaller

convolutional kernels and deeper layers. GoogLeNets [3] use

different convolution kernels to establish more connections and

more diverse representations between adjacent layers. ResNets [4]

and Highway Networks [5] add the front layer information to the

back layer through the bypass structure, which is more conducive

to the backpropagation of the gradient, thus further deepening the

depth of the network. ResNeXts [6] combine group convolution

into ResNets [4], which perform split-transform-merge operations

on features to improve network performance while reducing

parameters. DenseNets [7] pass the features of each preceding

layer to all of its subsequent layers to alleviate the

vanishing/exploding gradient problem and to facilitate

information fusion between layers.

In SamplePairing [8] and mixup [9], a data enhancement method

using a combination of two pictures in a training set is proposed.

SamplePairing [8] randomly selects a sample in the training set to

perturb the original sample (adding the two samples and then

averaging them) and using the label of the original sample as the

label of the new sample. Because different types of training

samples are introduced during training, the neural network trained

by the method has high training errors and losses, and the original

samples need to be used to fine-tune the neural network or use a

certain proportion of original samples in each batch.

2. RELATE WORK
Recently, in SamplePairing [8] and mixup [9], a data

augmentation method using a combination of two pictures in a

training set is proposed. SamplePairing [8] randomly selects a

sample in the training set to perturb the original sample (adding

the two samples and then averaging them) and using the label of

the original sample as the label of the new sample. Because

different types of training samples are introduced during training,

the neural network trained by the method has high training errors

and losses, and the original samples need to be used to fine-tune

the neural network or use a certain proportion of original samples

in each batch. The mixup [9] uses a random value from the beta

distribution  as a weight to interpolate the two samples and their

corresponding labels, respectively. The neural network trained in

this way can achieve relatively low training errors and losses

without the need for fine tuning.

There's a lot of work related to regularization. Dropout [10] and

DropConnect [11], making each neuron more capable of

representation by discarding a certain percentage of neurons or

connecting paths during training. Stochastic depth [12] averages

architectures with various depths through randomly skipping

layers. Swapout samples from abundant set of architectures with

dropout and stochastic depth as its special case. In BN [13], the

features of each layer in the network will be given a normal

distribution again, which makes the neural network easier to learn.

3. MIXUP TRAINING METHOD
In this section, we first introduce the original mixup method in 3.1,

and then introduce the more general mixup method in Section 3.2.

Finally, in Section 3.3, we introduce the use of mixup for multi-

class training.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

ICMLT 2018, May 19--21, 2018, JINAN, China

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6432-4/18/05…$15.00

DOI: https://doi.org/10.1145/3231884.3231896

53

3.1 The Original Mixup
We found that SamplePairing and mixup are very similar to

traditional data enhancement methods, but they are also different.

SamplePairing adds other samples from the training set as noise to

regularize the neural network during training.

The mixup in the original text is implemented by using a random

value to weight the samples and their labels. Mixup can be

formalized as:

10..

)1()1(~

)1(~













ts

yyy

xxx

ji

ji

Figure 1. The top2-precision and top2-all-precision means that

during training or testing, two samples are mixed in different

proportions and then input to the ResNet-56 [4].

where),(ii yx and),(jj yx are two examples drawn at

random from our training data, and  in]1,0[. In the mixup,

training samples and their labels simultaneously reduce the  or

1 times, implying this linear relationship. The signal strength

becomes  or 1 times, the corresponding feedback signal

will be  or 1 times that of the original. Our experiments

show that training samples and their labels do not simply have a

linear relationship.

3.2 More General Mixup

Let's take the sample's mixing ratio as x and the sample label's

mixing ratio as l . Our empirical experiments show that the

sample mixing ratio x and the label mixing ratio l do not have

to be the same and do not have to come from the same distribution.

We define the two ratios of x and l to be

]5.0,5.0[xx RR  and]5.0,5.0[ll RR 

respectively, where lx RR , in]5.0,0[. When xR is equal to

lR , we write them uniformly as R . Conversely, when we use

R , it means xR is equal to lR . Figure (1) analyzes the training

accuracy of mixup training methods for different values of xR and

lR . Figure (1.a) shows that when lR remains unchanged, the

training accuracy of the network increases as the defined range of

xR becomes larger. Figure (1.b) shows that when xR remains

unchanged, the training accuracy of the network increases with

the increasing range of lR . But their training precision can not

reach 1. Figure (1.c) shows that as xl RR , change range becomes

larger, the network training accuracy gradually increased. Figure

(1.d) shows that lR and xR have the same range of variation, but

their values are not necessarily the same.

In Figure (1.a), 0xR , only lR is changing. We call this

training method mixup-L. In Figure (1.b), 0lR , only xR is

changing, and we call this training method mixup-X. Figure (1.c)

to achieve the original paper mixup, then lx RR  , they

simultaneously change. In Figure (1.d), xR and lR are all

changing, but lx RR  , we call this form mixup-XL.

In Figure (1), top2-precision represents the category for each of

the two samples. Consider the confusion between two samples,

that is, dividing the two samples into each other's categories, with

top2-all-precision equal to top2-precision plus the accuracy of

reversing the order of the two categories in top2-precsion.

Through the gap between top2-precision and top2-all-precision,

we can well measure the degree of confusion that neural networks

classify two samples. Note that in the case of multi-label

prediction, when the two category labels are the same, since the

neural network takes top2 for the prediction, it will inevitably lead

to a wrong prediction of one category. We assume that the

probabilities of encountering the same category during training

and testing are
N

1
, where N is the number of categories. The

highest accuracy is
N

2
1 for the N categories of samples.

Figure (1) shows that the mixup training method is quite different

from the traditional training methods. In the traditional training

method, the input and output are fixed, the training error can be

reduced to 0. In mixup, however, the training error is not reduced

to 0 if either end of the inputs and outputs are fixed, but this does

not guarantee that the generalization error is higher than the

generalization error of the network using the traditional method.

3.3 Multi-Category Classification
These experiments help us to explain why the mixup works so

well: it can separate the two categories at the same time. The

neural network adjusts to two directions at the same time. When

the difference between the two categories is very small (R is

54

small), the neural network can not distinguish the two categories

well, so that the training error can not reach 0. When R are large,

the neural network will adjust one of the samples separately. In

this way, the neural network will have the opportunity to

distinguish the two classes because this process is equivalent to

training a sample separately. This is similar to intermittently using

SamplePairing for training. In SamplePairing, 2 epochs out of 10

epochs use SamplePairing training and 8 epochs use ERM

training. When using SamplePairing training, it is equivalent to

the training method when 0R in the mixup. When ERM

training is used, it is equivalent to the training method with

5.0R in the mixup, in which the information of one sample

almost disappears. Therefore, mixup is a smooth way of

SamplePairing, and the mixup training method can be interpreted

as: When the mixing ratio is small, mixup is equivalent to the

Figure 2. Effect of different mixtures of samples on multi-class

network performance. The mixture of the two samples in (a) is

additive, and the combination of the two samples in (b) is a

concatenation.

regularization process. When the mixing ratio is large, it is similar

to the ERM training process.

From Figure (1.c) and Figure (1.d), we can see that the neural

network training accuracy is less than 1 when 5.0R . This is

because the neural network is confused with the sample, that is,

each input sample contributes to more than one category

simultaneously. The neural network will be confused for samples

with overlapping sample types. In order to quantitatively study the

degree of confusion, we use the confusion rate to measure the

proportion of neural network misclassification. The confusion rate

of traditional training methods is 0, and the average training

precision is 1. SamplePairing training method mixing rate is 0.5,

the average training accuracy is 0.5. When the mixing ratio is

)1(: RR  , the confusion ratio is)1,min(RR  . For

example, if the mixup ratio of a sample is 0.8:0.2, the confusion

rate is 0.2, and the average training precision can only reach 0.8.

We call the ratio of mixups when R is maximized as the blending

ratio of the borders. Obviously, the mixing efficiency of mixups

depends on the blending ratio of the boundary. For example, when

5.0R , the boundary blending ratio is 1:0, the confusion rate

is 0, and the average training precision is 1.

4. PREDICT MUTILPLE CATEGORIES

4.1 Mixup Variants
To demonstrate that mixup can separate multiple categories

simultaneously in a forward process, we have designed

experiments that can predict multiple categories simultaneously.

In this experiment, all the channels of two images are used as

input of neural network, and the probability of top2 of network

output is taken as the category of two images respectively.

Samples and their labels will use the following mixup form:

10..

)2(])1(,[~

])1(,[~













ts

yyy

xxx

ji

ji

Figure 3. Multi-sample classification network architecture.

Red and green represent two samples (input layer) or

classification results (output layer), respectively. Green

represents the network architecture.

where “[]” indicates the concatenation operation. We call this

method mixup-C. Although Equation (2) and Equation (1) have

the same form, we found that this implementation has a

significant impact on the accuracy of one and two categories.

Figure (2) shows the training and testing accuracy of top2 and

top1 for mixup-C and mixup.

As mentioned in section 3, when two categories of samples are the

same, at least one sample is classified as the wrong category. In

this experiment, we compare the accuracy of the mixup-C and the

mixup. It can be found that there are few interlaced parts in the

Figure (2.a) and Figure (2.b). That is, the neural network can

accurately classify them into two categories. In Figure (2.b), the

neural network predicts the accuracy of the two categories to be

70% at one time, which means that the neural network can

separate the two samples into two categories at the same time

without any confusion.

4.2 Multi-Sample Confusion Problem
When the neural network classifies two samples at the same time,

either the two samples are input into two neural networks

respectively, or one sample is predicted first and then the other

sample is predicted. How to predict multiple categories

simultaneously in a forward process of neural network? Section

(3.1) gives a simple way. In this section, we will explore to what

extent the neural network confuses two samples, or can we

separate them accurately. We not only pay attention to training

accuracy, but also focus on test accuracy. To further explore how

neural networks can classify two categories simultaneously in a

55

forward process, while reducing computational time and

computational resources. The neural network is designed with two

inputs and two outputs. The middle layer of the neural network is

designed as a shared structure. The network architecture used in

this section is given in Figure (3).

The difference with the traditional network is that the final layer

of this network will output the prediction of two categories. We

directly add the cross-entropy of the output of the two categories.

The loss of the whole network is:

1..

)3()]([log

1

1

)(~













N

i

i

N

i

iiypyi

ts

yCELoss
iii





Figure 4. Mixup-C training and testing performance in two

categories.

5. EXPERIMENTS

5.1 Training
For comparison purposes, we use the same network architecture

for all datasets and set the same hyperparameters and training

procedures for neural networks trained on CIFAR-10 [14] dataset.

ResNet-56 [4] is used as the basic network architecture. The

network architecture is divided into 3 blocks, each of which is a

residual block containing two convolutional layers. After each

block, the feature size is halved and the number of channels is

doubled. ResNet-56 [4] is used for all datasets and set the same

hyperparameters and training procedures for neural networks

trained on different datasets.

All the networks are trained on two Tesla k80 GPUs using

stochastic gradient descent (SGD). We use a weight decay of

1x10-4 and a Nesterov momentum [15] of 0.9 without dampening.

The batch size on each GPU is set to 128 for 100 epochs. The

initial learning rate is set to 0.1 and is divided by 10 at 40%, 60%

and 80% of the total number of training epochs.

5.2 Mixup-C
Figure (4) shows the training accuracy and test accuracy of the

network for two categories on the CIFAR-10 [14] dataset. It can

be found that the training accuracy of the two neural networks is

about 96%, indicating that there is still some confusion in the

neural network. The first category of the average test accuracy of

88.41%, the second category of the average test accuracy is

88.61%, the classification accuracy has been quite good.

This shows that mixup-C can separate two categories at the same

time in a forward process. We found some confusion between the

first category and the second category, but the degree of confusion

is very low. This ensures that the neural network can classify

multiple samples.

5.3 Random Interpolation between Samples
When we use the mixup-C network to train two categories of

samples, we only change one of the lambdas in equation (2). This

means that we can perform random interpolation between samples

and its labels.

Figure (5) shows the effect of the two interpolation methods on

the multiclass performance of the mixup-C network. We can see

that the two types of interpolation have similar performance: one

of the two categories is normally trained and the other is close to

random guessing. We analyze that this reason arises because the

network has more competition among multiple categories when

conducting multi-category training. When a category fails to

compete in the initial stage of training, the information of the

category of the category will not be used in the subsequent

training, and all its information is almost completely filtered as

noise. Conversely, categories that gain greater competitive

advantage at the beginning of training will have a good

competitive advantage in the later stages of training. Note that

which category will gain competitive advantage at the beginning

of the training depends on the value of  at the beginning.

Because the value of  is subject to a random distribution, a

category's competitive victory in the training phase is also random.

Figure 5. Random interpolation between samples. (a)

represents a random interpolation between samples, and (b)

represents a random interpolation between the labels.

5.4 Random Label
In order to compare the random interpolation between the samples

and the random label for one of the samples, we set a sample from

multiple samples as a random label to test the multi-class

performance of mixup-C.

Figure (6) shows the performance of mixup-C with random labels.

It can be seen that it is very similar to the process of random

56

interpolation between samples. This proves to some extent the

conclusion in Section 5.4 that the information of the category that

failed to compete in the initial stage of training will be treated as

random noise.

5.5 Fineturning
For networks using different mixup training, further fine-tuning

can further improve the generalization performance of the single-

category network. Note that in this fine-tuning process, multiple

categories of input and output layers will be replaced by a single

category.

The results were shown in Table (1). From the Table (1), we can

see that the single class precision of the network after the fine-

tuning has a greater increase, which is because the confusion

between multiple categories is eliminated when the single class is

fine-tuning, which makes the network better fit for a single class

of samples.

Table 1. Fine-tuning the ResNet-56 using different training

methods.

Network Mixup-X Mixup-L Mixup-C

Original 90.2% 90.8% 92.5%

Fine-tuning 93.1% 93.5% 93.7%

Figure 6. The multiclass classification of mixup-C, where the

label of a sample is set to a random value.

6. CONCLUSIONS
In this paper, we analyze the training effect of the mixup method

and propose a variation of the mixup, which has the same good

performance as the mixup method. Mixup training can use not

only random values from the same distribution, but also different

random values for samples and its labels, and these random values

can come from different distributions. To further understand the

mixup approach, we found that the mixup approach can classify

multiple categories in a forward process, effectively avoiding

sample aliasing. This is also the reason that mixup classification is

effective, that is, the neural network can fit the distribution

provided by mixup. Based on the mixup method, we can classify

multiple categories. We propose a network architecture that can

classify multiple categories at the same time in the same forward

process. Our experiments show that the architecture has good

multi-classification performance. Finally, based on the degree of

regularization of the mixup, we find that fine-tuning the neural

network trained by mixup can effectively improve the

performance of the network.

7. ACKNOWLEDGMENTS
The work is partially supported by the Technology and

Development Project of Shandong (No.2013GGX10125).

8. REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural

networks. In International Conference on Neural Information

Processing Systems, pages 1097–1105, 2012.

[2] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,

Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej

Karpathy, Aditya Khosla, and Michael Bernstein. Imagenet

large scale visual recognition challenge. International Journal

of Computer Vision, 115(3):211–252, 2014.

[3] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. pages 1–9, 2014.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. pages 770–
778, 2015.

[5] Rupesh Kumar Srivastava, Klaus Greff, and JÃijrgen

Schmidhuber. Training very deep networks. Computer

Science, 2015.

[6] Saining Xie, Ross Girshick, Piotr DollÃ ąr, Zhuowen Tu,

and Kaiming He. Aggregated residual transformations for

deep neural networks. 2016.

[7] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. In CVPR, 2016.

[8] Inoue H. Data Augmentation by Pairing Samples for Images

Classification. arXiv preprint arXiv:1801.02929, 2018.

[9] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, mixup:

Beyond empirical risk minimization. arXiv preprint

arXiv:1710.09412, 2017.

[10] J. Ba, B. Frey, Adaptive dropout for training deep neural

networks, in: C. J. C. Burges, L. Bottou, M. Welling, Z.

Ghahramani, K. Q. Weinberger (Eds.), Advances in Neural

Information Processing Systems 26, Curran Associates,

Inc.,2013, pp. 3084–3092.

[11] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, R. Fergus,

Regularization of neural networks using dropconnect, in: S.

Dasgupta, D. McAllester (Eds.), Proceedings of the 30th

International Conference on Machine Learning, Vol. 28 of

Proceedings of Machine Learning Research, PMLR, Atlanta,

Georgia, USA, 2013, pp. 1058–1066.

[12] G. Huang, Y. Sun, Z. Liu, D. Sedra, K. Q. Weinberger, Deep

networks with stochastic depth, in: B. Leibe, J. Matas, N.

Sebe, M. Welling (Eds.), ComputerVision – ECCV 2016,

Springer International Publishing, Cham, 2016, pp. 646–
661.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. pages 448–456, 2015.

[14] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Tech Report, 2009.

[15] Ilya Sutskever, James Martens, George Dahl, and Geoffrey

Hinton. On the importance of initialization and momentum in

deep learning. In International Conference on International

Conference on Machine Learning, pages III–1139, 2013.

57

