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ABSTRACT 

The mixup training method has achieved a better generalization 

performance than the traditional training method. But there is no 

interpretation to why mixup has such a good generalization. In 

this paper, a series of ablation experiments were first done to 

prove that the training method of mixup is equivalent to a 

regularization and data augmentation. Then, we propose several 

different multi-sample training methods as variations of the mixup, 

which can also achieve comparable performance with mixup. This 

method shows that the different mixing methods can achieve the 

same effect as the original mixup training method. Next, a 

network architecture that can classify multiple samples at the 

same time is being proposed. The  network architecture prove that 

mixup does not only learn a linear interpolation between the two 

categories, but learns to separate the two categories more 

accurately. Finally, through the fineturning of mixup, the training 

precision can be further improved. 

CCS Concepts 

• Computing methodologies➝Machine learning➝Machine 

learning approaches➝Neural networks.   
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1. INTRODUCTION 
Convolutional neural networks have made great progress in many 

fields, and the research of the network architecture has never 

stopped. AlexNet [1] is the first to demonstrate the generalization 

ability of convolutional neural networks on large data. VGGNets 

[2] show that better performance can be achieved with smaller 

convolutional kernels and deeper layers. GoogLeNets [3] use 

different convolution kernels to establish more connections and 

more diverse representations between adjacent layers. ResNets [4] 

and Highway Networks [5] add the front layer information to the 

back layer through the bypass structure, which is more conducive 

to the backpropagation of the gradient, thus further deepening the 

depth of the network. ResNeXts [6] combine group convolution 

into ResNets [4], which perform split-transform-merge operations 

on features to improve network performance while reducing 

parameters. DenseNets [7] pass the features of each preceding 

layer to all of its subsequent layers to alleviate the 

vanishing/exploding gradient problem and to facilitate 

information fusion between layers.   

In SamplePairing [8] and mixup [9], a data enhancement method 

using a combination of two pictures in a training set is proposed. 

SamplePairing [8] randomly selects a sample in the training set to 

perturb the original sample (adding the two samples and then 

averaging them) and using the label of the original sample as the 

label of the new sample. Because different types of training 

samples are introduced during training, the neural network trained 

by the method has high training errors and losses, and the original 

samples need to be used to fine-tune the neural network or use a 

certain proportion of original samples in each batch.  

2. RELATE WORK 
Recently, in SamplePairing [8] and mixup [9], a data 

augmentation method using a combination of two pictures in a 

training set is proposed. SamplePairing [8] randomly selects a 

sample in the training set to perturb the original sample (adding 

the two samples and then averaging them) and using the label of 

the original sample as the label of the new sample. Because 

different types of training samples are introduced during training, 

the neural network trained by the method has high training errors 

and losses, and the original samples need to be used to fine-tune 

the neural network or use a certain proportion of original samples 

in each batch. The mixup [9] uses a random value from the beta 

distribution  as a weight to interpolate the two samples and their 

corresponding labels, respectively. The neural network trained in 

this way can achieve relatively low training errors and losses 

without the need for fine tuning.  

There's a lot of work related to regularization. Dropout [10] and 

DropConnect [11], making each neuron more capable of 

representation by discarding a certain percentage of neurons or 

connecting paths during training. Stochastic depth [12] averages 

architectures with various depths through randomly skipping 

layers. Swapout samples from abundant set of architectures with 

dropout and stochastic depth as its special case. In BN [13], the 

features of each layer in the network will be given a normal 

distribution again, which makes the neural network easier to learn. 

3. MIXUP TRAINING METHOD 
In this section, we first introduce the original mixup method in 3.1, 

and then introduce the more general mixup method in Section 3.2. 

Finally, in Section 3.3, we introduce the use of mixup for multi-

class training. 
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3.1 The Original Mixup 
We found that SamplePairing and mixup are very similar to 

traditional data enhancement methods, but they are also different. 

SamplePairing adds other samples from the training set as noise to 

regularize the neural network during training.  

The mixup in the original text is implemented by using a random 

value to weight the samples and their labels. Mixup can be 

formalized as: 
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Figure 1. The top2-precision and top2-all-precision means that 

during training or testing, two samples are mixed in different 

proportions and then input to the ResNet-56 [4]. 

where ),( ii yx and ),( jj yx are two examples drawn at 

random from our training data, and  in ]1,0[ . In the mixup, 

training samples and their labels simultaneously reduce the  or 

1 times, implying this linear relationship. The signal strength 

becomes  or 1 times, the corresponding feedback signal 

will be  or 1 times that of the original. Our experiments 

show that training samples and their labels do not simply have a 

linear relationship.  

3.2 More General Mixup 

Let's take the sample's mixing ratio as x and the sample label's 

mixing ratio as l . Our empirical experiments show that the 

sample mixing ratio x and the label mixing ratio l do not have 

to be the same and do not have to come from the same distribution. 

We define the two ratios of x and l to be 

]5.0,5.0[ xx RR  and ]5.0,5.0[ ll RR   

respectively, where lx RR , in ]5.0,0[ . When xR is equal to 

lR , we write them uniformly as R . Conversely, when we use 

R , it means xR is equal to lR . Figure (1) analyzes the training 

accuracy of mixup training methods for different values of xR and 

lR . Figure (1.a) shows that when lR remains unchanged, the 

training accuracy of the network increases as the defined range of 

xR becomes larger. Figure (1.b) shows that when xR remains 

unchanged, the training accuracy of the network increases with 

the increasing range of lR . But their training precision can not 

reach 1. Figure (1.c) shows that as xl RR , change range becomes 

larger, the network training accuracy gradually increased. Figure 

(1.d) shows that lR and xR have the same range of variation, but 

their values are not necessarily the same. 

In Figure (1.a), 0xR , only lR is changing. We call this 

training method mixup-L. In Figure (1.b), 0lR , only xR is 

changing, and we call this training method mixup-X. Figure (1.c) 

to achieve the original paper mixup, then lx RR  , they 

simultaneously change. In Figure (1.d), xR and lR are all 

changing, but lx RR  , we call this form mixup-XL. 

In Figure (1), top2-precision represents the category for each of 

the two samples. Consider the confusion between two samples, 

that is, dividing the two samples into each other's categories, with 

top2-all-precision equal to top2-precision plus the accuracy of 

reversing the order of the two categories in top2-precsion. 

Through the gap between top2-precision and top2-all-precision, 

we can well measure the degree of confusion that neural networks 

classify two samples. Note that in the case of multi-label 

prediction, when the two category labels are the same, since the 

neural network takes top2 for the prediction, it will inevitably lead 

to a wrong prediction of one category. We assume that the 

probabilities of encountering the same category during training 

and testing are 
N

1
, where N is the number of categories. The 

highest accuracy is 
N

2
1  for the N categories of samples.  

Figure (1) shows that the mixup training method is quite different 

from the traditional training methods. In the traditional training 

method, the input and output are fixed, the training error can be 

reduced to 0. In mixup, however, the training error is not reduced 

to 0 if either end of the inputs and outputs are fixed, but this does 

not guarantee that the generalization error is higher than the 

generalization error of the network using the traditional method.  

3.3 Multi-Category Classification 
These experiments help us to explain why the mixup works so 

well: it can separate the two categories at the same time. The 

neural network adjusts to two directions at the same time. When 

the difference between the two categories is very small ( R is 
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small), the neural network can not distinguish the two categories 

well, so that the training error can not reach 0. When R are large, 

the neural network will adjust one of the samples separately. In 

this way, the neural network will have the opportunity to 

distinguish the two classes because this process is equivalent to 

training a sample separately. This is similar to intermittently using 

SamplePairing for training. In SamplePairing, 2 epochs out of 10 

epochs use SamplePairing training and 8 epochs use ERM 

training. When using SamplePairing training, it is equivalent to 

the training method when 0R in the mixup. When ERM 

training is used, it is equivalent to the training method with 

5.0R in the mixup, in which the information of one sample 

almost disappears. Therefore, mixup is a smooth way of 

SamplePairing, and the mixup training method can be interpreted 

as: When the mixing ratio is small, mixup is equivalent to the  

 

 

Figure 2. Effect of different mixtures of samples on multi-class 

network performance. The mixture of the two samples in (a) is 

additive, and the combination of the two samples in (b) is a 

concatenation. 

regularization process. When the mixing ratio is large, it is similar 

to the ERM training process. 

From Figure (1.c) and Figure (1.d), we can see that the neural 

network training accuracy is less than 1 when 5.0R . This is 

because the neural network is confused with the sample, that is, 

each input sample contributes to more than one category 

simultaneously. The neural network will be confused for samples 

with overlapping sample types. In order to quantitatively study the 

degree of confusion, we use the confusion rate to measure the 

proportion of neural network misclassification. The confusion rate 

of traditional training methods is 0, and the average training 

precision is 1. SamplePairing training method mixing rate is 0.5, 

the average training accuracy is 0.5. When the mixing ratio is 

)1(: RR  , the confusion ratio is )1,min( RR  . For 

example, if the mixup ratio of a sample is 0.8:0.2, the confusion 

rate is 0.2, and the average training precision can only reach 0.8. 

We call the ratio of mixups when R is maximized as the blending 

ratio of the borders. Obviously, the mixing efficiency of mixups 

depends on the blending ratio of the boundary. For example, when 

5.0R , the boundary blending ratio is 1:0, the confusion rate 

is 0, and the average training precision is 1. 

4. PREDICT MUTILPLE CATEGORIES 

4.1 Mixup Variants 
To demonstrate that mixup can separate multiple categories 

simultaneously in a forward process, we have designed 

experiments that can predict multiple categories simultaneously. 

In this experiment, all the channels of two images are used as 

input of neural network, and the probability of top2 of network 

output is taken as the category of two images respectively. 

Samples and their labels will use the following mixup form: 
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Figure 3. Multi-sample classification network architecture. 

Red and green represent two samples (input layer) or 

classification results (output layer), respectively. Green 

represents the network architecture. 

where “[ ]” indicates the concatenation operation. We call this 

method mixup-C. Although Equation (2) and Equation (1) have 

the same form, we found that this implementation has a 

significant impact on the accuracy of one and two categories. 

Figure (2) shows the training and testing accuracy of top2 and 

top1 for mixup-C and mixup. 

As mentioned in section 3, when two categories of samples are the 

same, at least one sample is classified as the wrong category. In 

this experiment, we compare the accuracy of the mixup-C and the 

mixup. It can be found that there are few interlaced parts in the 

Figure (2.a) and Figure (2.b). That is, the neural network can 

accurately classify them into two categories. In Figure (2.b), the 

neural network predicts the accuracy of the two categories to be 

70% at one time, which means that the neural network can 

separate the two samples into two categories at the same time 

without any confusion. 

4.2 Multi-Sample Confusion Problem 
When the neural network classifies two samples at the same time, 

either the two samples are input into two neural networks 

respectively, or one sample is predicted first and then the other 

sample is predicted. How to predict multiple categories 

simultaneously in a forward process of neural network? Section 

(3.1) gives a simple way. In this section, we will explore to what 

extent the neural network confuses two samples, or can we 

separate them accurately. We not only pay attention to training 

accuracy, but also focus on test accuracy. To further explore how 

neural networks can classify two categories simultaneously in a 
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forward process, while reducing computational time and 

computational resources. The neural network is designed with two 

inputs and two outputs. The middle layer of the neural network is 

designed as a shared structure. The network architecture used in 

this section is given in Figure (3). 

The difference with the traditional network is that the final layer 

of this network will output the prediction of two categories. We 

directly add the cross-entropy of the output of the two categories. 

The loss of the whole network is: 
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Figure 4. Mixup-C training and testing performance in two 

categories. 

5. EXPERIMENTS 

5.1 Training 
For comparison purposes, we use the same network architecture 

for all datasets and set the same hyperparameters and training 

procedures for neural networks trained on CIFAR-10 [14] dataset. 

ResNet-56 [4] is used as the basic network architecture. The 

network architecture is divided into 3 blocks, each of which is a 

residual block containing two convolutional layers. After each 

block, the feature size is halved and the number of channels is 

doubled. ResNet-56 [4] is used for all datasets and set the same 

hyperparameters and training procedures for neural networks 

trained on different datasets.  

All the networks are trained on two Tesla k80 GPUs using 

stochastic gradient descent (SGD). We use a weight decay of 

1x10-4 and a Nesterov momentum [15] of 0.9 without dampening. 

The batch size on each GPU is set to 128 for 100 epochs. The 

initial learning rate is set to 0.1 and is divided by 10 at 40%, 60% 

and 80% of the total number of training epochs.  

5.2 Mixup-C 
Figure (4) shows the training accuracy and test accuracy of the 

network for two categories on the CIFAR-10 [14] dataset. It can 

be found that the training accuracy of the two neural networks is 

about 96%, indicating that there is still some confusion in the 

neural network. The first category of the average test accuracy of 

88.41%, the second category of the average test accuracy is 

88.61%, the classification accuracy has been quite good.  

This shows that mixup-C can separate two categories at the same 

time in a forward process. We found some confusion between the 

first category and the second category, but the degree of confusion 

is very low. This ensures that the neural network can classify 

multiple samples. 

5.3 Random Interpolation between Samples 
When we use the mixup-C network to train two categories of 

samples, we only change one of the lambdas in equation (2). This 

means that we can perform random interpolation between samples 

and its labels.  

Figure (5) shows the effect of the two interpolation methods on 

the multiclass performance of the mixup-C network. We can see 

that the two types of interpolation have similar performance: one 

of the two categories is normally trained and the other is close to 

random guessing. We analyze that this reason arises because the 

network has more competition among multiple categories when 

conducting multi-category training. When a category fails to 

compete in the initial stage of training, the information of the 

category of the category will not be used in the subsequent 

training, and all its information is almost completely filtered as 

noise. Conversely, categories that gain greater competitive 

advantage at the beginning of training will have a good 

competitive advantage in the later stages of training. Note that 

which category will gain competitive advantage at the beginning 

of the training depends on the value of  at the beginning. 

Because the value of  is subject to a random distribution, a 

category's competitive victory in the training phase is also random. 

 

Figure 5. Random interpolation between samples. (a) 

represents a random interpolation between samples, and (b) 

represents a random interpolation between the labels. 

5.4 Random Label 
In order to compare the random interpolation between the samples 

and the random label for one of the samples, we set a sample from 

multiple samples as a random label to test the multi-class 

performance of mixup-C. 

Figure (6) shows the performance of mixup-C with random labels. 

It can be seen that it is very similar to the process of random 

56



interpolation between samples. This proves to some extent the 

conclusion in Section 5.4 that the information of the category that 

failed to compete in the initial stage of training will be treated as 

random noise. 

5.5 Fineturning 
For networks using different mixup training, further fine-tuning 

can further improve the generalization performance of the single-

category network. Note that in this fine-tuning process, multiple 

categories of input and output layers will be replaced by a single 

category. 

The results were shown in Table (1). From the Table (1), we can 

see that the single class precision of the network after the fine-

tuning has a greater increase, which is because the confusion 

between multiple categories is eliminated when the single class is 

fine-tuning, which makes the network better fit for a single class 

of samples.  

Table 1. Fine-tuning the ResNet-56 using different training 

methods. 

Network Mixup-X Mixup-L Mixup-C 

Original 90.2% 90.8% 92.5% 

Fine-tuning 93.1% 93.5% 93.7% 

 

Figure 6. The multiclass classification of mixup-C, where the 

label of a sample is set to a random value. 

6. CONCLUSIONS 
In this paper, we analyze the training effect of the mixup method 

and propose a variation of the mixup, which has the same good 

performance as the mixup method. Mixup training can use not 

only random values from the same distribution, but also different 

random values for samples and its labels, and these random values 

can come from different distributions. To further understand the 

mixup approach, we found that the mixup approach can classify 

multiple categories in a forward process, effectively avoiding 

sample aliasing. This is also the reason that mixup classification is 

effective, that is, the neural network can fit the distribution 

provided by mixup. Based on the mixup method, we can classify 

multiple categories. We propose a network architecture that can 

classify multiple categories at the same time in the same forward 

process. Our experiments show that the architecture has good 

multi-classification performance. Finally, based on the degree of 

regularization of the mixup, we find that fine-tuning the neural 

network trained by mixup can effectively improve the 

performance of the network. 
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