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ABSTRACT The performance and parameters of neural networks have a positive correlation, and there are
a lot of parameter redundancies in the existing neural network architectures. By exploring the channels
relationship of the whole and part of the neural network, the architectures of the convolution network
with the tradeoff between the parameters and the performance are obtained. Two network architectures are
implemented by dividing the convolution kernels of one layer into multiple groups, thus ensuring that the
network has more connections and fewer parameters. In these two network architectures, the information of
one network flows from the whole to the part, which is called whole-to-part connected networks (WPNets),
and the information of the other network flows from the part to the whole, which is called part-to-whole
connected networks (PWNets). WPNets use the whole channel information to enhance partial channel
information, and the PWNets use partial channel information to generate or enhance the whole channel
information. We evaluate the proposed architectures on three competitive object recognition benchmark
tasks (CIFAR-10, CIFAR-100, SVHN, and ImageNet), and our models obtain comparable results even with
far fewer parameters compared to many state of the arts. Our network architecture code is available at github.

INDEX TERMS Machine learning, computer vision, image processing.

I. INTRODUCTION
Convolutional neural networks have made great progress
in many fields, and the research of the network architec-
ture has never stopped. There are a lot of networks that
have achieved very good performance by applying new
architectures. AlexNet [1] is the first to demonstrate the
generalization ability of convolutional neural networks on
large data. VGGNets [2] show that better performance can
be achieved with smaller convolutional kernels and deeper
layers. GoogLeNets [3] use different convolution kernels
to establish more connections and more diverse represen-
tations between adjacent layers. ResNets [4] and Highway
Networks [5] add the front layer information to the back layer
through the bypass structure, which is more conducive to the
backpropagation of the gradient, thus further deepening the
depth of the network. ResNeXts [6] combine group convolu-
tion into ResNets [4], which perform split-transform-merge
operations on features to improve network performance while
reducing parameters. DenseNets [7] pass the features of each
preceding layer to all of its subsequent layers to alleviate the

vanishing/exploding gradient problem [8], [9] and to facili-
tate information fusion between layers.

We conclude that the following principles need to be
considered in neural network designs:
• Ensure the gradient efficient backpropagation to avoid
gradient vanishing problem.

• Use different layers of information fusion to learn the
diversity of representation.

• Reduce the parameters as much as possible so that the
network can train and inference more quickly.

Which feature fusion method is the most effective? This
is an open question, but there is a rough direction that uses
more primitive features andmakesmore connections between
layers as well as guarantee the efficiency of stochastic
gradient descent (SGD) with backpropagation [10]. In this
paper, we fully explore the relationship between the whole
and the part of the neural network’s channels, include whole-
to-part and part-to-whole connection relation. In WPNets,
the feature channel is first divided into several groups, and
then the overall features are sequentially added to each group
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FIGURE 1. The symbol C in the figure represents a convolution operation,
the ‘‘+’’ represents an addition operation, and the straight line with an
arrow represents the flow of information. In WPNets block, the original
channel is divided into 3 groups, each time compressing all the channels
information to a group until all the groups are changed.

by convolution. Fig. 1 illustrates this layout schematically.
In PWNets, the part of channels is convoluted and then
add them to the entire channels. Fig. 2 depicts this network
architecture.

FIGURE 2. The various symbols in the figure are the same as those in
FIG. 1. In PWNets block, the original channel is divided into 3 groups,
the channels information of the 3 groups is connected to all groups in
turn.

A network designed with the whole and partial rela-
tionships of the channel has many advantages over other
networks. The group structure in WPNets are similar to
‘‘Inception Module’’ in GoogLeNets [3], and the bypass
structure in WPNets are like that in ResNets [4], which trans-
fers information to the back layer. The channel information
for WPNets will flows all subsequent layers, which is similar
to that in DenseNets [7].

Contrary to WPNets, the PWNets first amplifies the infor-
mation of one group by convolution, and then fuse it with
all channel information. As shown in Fig. 2, the number of
channels in each group is magnified to the sum channels in all
groups, and the amplified channels are then added to the chan-
nels of all groups. The partial channels information is ‘‘ampli-
fied’’ to the whole channels information, which increases
the nonlinear computation and representation ability of the
network.

From the perspective of group convolution, the number of
intra-block connections for the two networks is G × G, G is
the number of groups. Half of the connections are between
groups, and the other half of connections are between layers.
There are so many connections that ensure the full fusion of
the information in each group and the addition or concatena-
tion operations are also present on each layer, so the problem
of gradient vanishing is therefore alleviated. Because a single
layer can be expanded into a block structure based on overall
and local relationships, the network can be designed to be
deeper while ensuring no additional parameters are added.

For instance, we can split a layer withC channels into a block
with a group number in {1, · · · ,C}, but the parameters of the
block remain unchanged as the depth of the block increases.

The main contributions of this paper include:
• By analyzing the relationship between channels, two
new network structures are proposed, one with infor-
mation flowing from whole to part (WPNets), and the
other one with information flowing from part to whole
(PWNets).

• With the same network depth, WPNets and PWNets
have more inter-group connections and inter-layer
connections, which have fewer parameters and better
performance than other network architectures.

• The traditional network layer can be replaced with the
block ofWPNets or PWNets without adding parameters,
so as to achieve better performance.

The article is organized as follows: First, Section II reviews
related works. Then two kinds of network blocks proposed in
Section III. After that in Section IV we’ll detail the network
architecture. Next, we present our experimental results in
Section V. Finally, we compare the various network archi-
tectures with ours in Section VI and conclude this paper in
Section VII.

II. RELATED WORK
There are many networks with multi-branch struct-
ures [11]–[14]. GoogLeNets [3], [15] use an ‘‘Inception
module’’ structure to convolve the features of the previous
layer using different filter sizes, and then combines these
features as input to the next layer. FractalNets [16] contain
interactive subpaths of different lengths, but does not contain
any straight-through or residual connections. This structural
layout is a truncated fractal that allows more connections
and representations between layers of the network. Wide
residual networks (WPN) [17] try to prove that the depth is
not the only factor of the ResNet [4] to achieve competitive
performance; they mainly achieve good performance by
extending the width. The Deeply-Fused Nets [18] combine
the intermediate representations of base networks, where the
fused output serves as the input of the remaining part of
each base network, and perform such combinations deeply
over several intermediate representations. The two networks
we proposed have similarities with these networks, but the
difference is that each layer of our network has channels
information fusion.

ResNets [4] and Highway Networks [5] allow low-level
layers information to flow to high-level layers through the
bypass structure; this alleviates the vanishing-gradient that
permitted to design hundreds of layers network. Unlike them,
the WPNets add all channels information to the partial chan-
nels, and the PWNets add part of the channel information
to all of its channels. The addition operations in the two
networks are similar to the identity mapping in ResNets [4],
which is used to transfer the previous layer information to the
sequential layer, so theWPNets and PWNets can be designed
very deep.
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Group convolution was first proposed by AlexNet [1];
it was for distributing the model over twoGPUs. ResNeXt [6]
was exploiting grouped convolutions to improve the accuracy
of ResNets. A special case of the grouped convolutions is the
channel-wise convolution in which the number of groups is
equal to the number of channels. Channel-wise convolution
are used extensively to reduce parameters or improve perfor-
mance in Xception [19] and MobileNets [20]. Similarly, our
network structure also divides the original information into
groups, but we convolute one group per layer instead of
convoluting them all in one layer.

Instead of adding identity mapping to the next layer,
DenseNets [7] concatenate the features of the current layer
into the subsequent layers, it allowing the high layer to
use all of the previous layer features, which alleviates the
vanishing-gradient and implements the implicit deep super-
vision. There are many similarities between our networks
and DenseNets [7]: the information flows to all its sequential
layers, so they can use all previous layer information to
produce the new layer. Themain difference is that we only use
all the previous informationwith the residual structure and the
other groups with the original information to get the residual
structure of the new layer. From the point of view of group
convolution, the connections between layers in the block of
WPNets are same as the DenseNets [7], the number is up
to G·G

2 , but the WPNets has more G·G
2 connections between

groups.

III. WHOLE AND PART CONNECTED NETWORKS
Block structure is widely used in information fusion
networks. The network structure usually has the same number
of feature size. We regard the block structure as an extended
version of the layer structure, so that in the process of infor-
mation fusion, some layer can filter or enhance the infor-
mation, then change the learning and representation of the
feature.Wefirst divide the networks intomany blocks, andwe
consider the whole and partial relationships within the block
channel.

We denote the features of the l th layer as xl , specially,
the input layer of the block as x0. We divide the channels
into G groups, and denote the jth(1 ≤ j ≤ G) group’s
features of layer l as gjl , the number of channels of this
group recorded as C j

l . We define f as a composite function of
multiple convolutional layers, and one layer includes many
consecutive operations, such as convolution, batch normal-
ization (BN) [21], and rectified linear unit (ReLU) [22].

A. WPNets
The block structure of WPNets can be defined as:

gjl = gjl + f (xl−1) (1)

xl = [g1l , · · · , g
j
l, · · · , g

G
l ] (2)

Where [g1l , . . . , g
j
l, . . . , g

G
l ] refers to the concatenation of all

groups’ feature-maps in layer l. The maximum value of j in
the equation is equal to the maximum value of l because the

number of groups are equal to the depth of the layer in the
block structure.

The f in eq. (1) is a composite function that ‘‘compresses’’
the features information in the l − 1 layer to the jth group in
the l th layer, so we call f a compression function. It should
be noted that if the number of channels output by f is not
equal to the number of channels in gjl . 0 will padded in the
insufficient channel to complete the addition operation in
eq. (1). After compression process, the information of the
group will be changed. Eq. (2) shows the changed group will
be concatenated with other unchanged groups as the inputs to
next layer. We did it in an iterative way until the features of
all groups have changed.

We can find that the network structure defined by eq. (1)
is very similar to ResNets [4]: they both add low-level layers
information to the high-level layers through the bypass struc-
ture. But the main difference is that WPNets add the informa-
tion of the front layer to the part of channels of the back layer,
rather than adding that to all channels like ResNets [4] does.
Such small differences between the two networks will result
in different ways of learning and representation information.
WPNets emphasize the relationship between the part and the
whole, and it forces each group to learn different information
representations from other groups, thus allowing the network
to have the diversity of representations. This conclusion can
be obtained from the experiments we have done in section V:
the performance of the network will be improved as the
number of groups increases.

If we remove the bypass structure of eq. (1), we will get
the following form:

gjl = f (xl−1) (3)

Using eq. (3), a new group is obtained at each layer to use
each group of informationmore evenly.We find that this form
can achieve very good performance but is a little worse than
the structure which uses eq. (1).

Eq. (2) is an important structure adopted by DenseNets,
which take all the front layers as input to produces the new
layer. If we think of WPNets groups as layers in DenseNets,
they will have a lot of similarities. They are both densely
connected networks, and they both use information from all
previous layers to produce or enhance the information of
the back layer. If we change the eq. (3) and eq. (2) into the
following form, we will get the DenseNets [7] architecture:

gG+1l = f (xl−1) (4)

xl = [g1l , · · · , g
j
l, · · · , g

G
l , gG+1l ] (5)

Eq. (4) produce the new layer gG+1l and eq. (5) concate-
nates the layer with all existing layers in the block. It looks
like the two structures are very similar, but in fact, there are
essential differences: the DenseNets [7] do not change the
information of the input features in the block, it just uses the
input features to produce new information and concatenate
it. In the shallow network, which is very effective, since the
proportion of the number of channels of the newly generated
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layer to the number of channels of the original layer is appro-
priate. But if the network becomes deeper, the proportion will
become small due to the number of origin channels becoming
larger, this will result in a very limited learning ability in
the back layer. If we increase the number of new generation
channels, this will lead to a dramatic increase in the number
of network parameters, then making the network difficult to
get deeper. This shows that the growth rate of the number
of channels in DenseNets [7] and its depth are contradicting
each other. One solution is to compress the channels through
the transition structure. Contrary to DenseNets [7], WPNets
only change the representation of the internal features in its
block.

The block structure of the WPNets can increase the
number of channels by replacing the origin group with a new
produced group. We can use eq. (3) and eq. (2) to imple-
ment it. But if we use eq (1) and eq. (2) to gradually increase
the number of channels of the block in WPNets, we should
project the origin group’s channels to the new groups by
padding the inadequate channels with 0. Both methods are
commonly used to implement WPNets.

B. PWNets
The block structure of PWNets can be defined as:

xl = xl−1 + f (g
j−1
l−1) (6)

gjl = xl/[g1l , · · · , g
j−1
l , gj+1l , · · · , gGl ] (7)

where the ‘‘ / ’’ in eq. (7) represents the operation of obtaining
differential sets, and eq. (7) representing the channels of
group gjl is obtained by removing channels of other groups
from the channel sets of xl . [g1l , · · · , g

j−1
l , gj+1l , · · · , gGl ]

representing the concatenation of all group features-maps
except the gjl group.

Contrary toWPNets, eq. (6) shows the layer in the block of
PWNets take the part of channels as inputs then addition its
outputs into the whole channels. The composite function f is,
to some extent, equivalent to a channel information amplifier,
so we call f the amplification function. If we want to increase
the number of channels at each layer, we will pad 0 in the area
where the number of channels is insufficient. Eq. (7) shows
that we will get the other group which added information
from the front group as the inputs for next layer. This process
will be done iteratively until all the groups had exchanged its
information with the whole channels.

The channels of each layer in the block of PWNets will
be magnified G times. From this point of view, PWNets are
a ensemble of SqueezeNets [23]. SqueezeNets [23] combine
the filter sizes of 1 × 1 and 3 × 3 into one convolution
process and increase the number of channels in each layer
of the nets, aiming to decrease the nets parameters as well
as to keep the net’s performance. Each group of PWNets is
equivalent to the bottleneck block of SqueezeNets [23] and
the output features will be preserved and flow to its sequence
layer.

C. RELATIONSHIP WITH TRADITIONAL NETWORK
Let’s analyze the two kinds of network structures from convo-
lutional kernel’s perspective. We can record the traditional
convolutional progress as:

Yl = f (Wl ? Xl−1) (8)

where X ,Y ,W are all matrices and respectively represent
the inputs, outputs and the parameters of the convolutional
kernel, f is a nonlinear function, and the asterisk ? is the
convolution operation. We can divide the corresponding
matrix into G blocks, which is equivalent to dividing
features into G groups. The matrix W can be grouped by
column or grouped by row, and we use the same superscript j
to represent the grouping of the matrixW . IfW is grouped by
columns, the number of convolution kernels in each group is
equal to the number of input channels. This grouping method
corresponds toWPNets. IfW is grouped by rows, the number
of convolution kernels in each group is equal to the number
of output channels. This grouping method corresponds to
PWNets. The matrix W can be grouped by columns as:

Y jl = f (W j
l ? Xl−1) (9)

where the superscript j(1 ≤ j ≤ G) is the index of matrix
blocks. If we add some limited conditions to eq. (9), we can
obtain the WPNets form with the follow conditions equation:

Y jl = f (W j
l ? Xl−1)+ X

j
l−1

Xl =
(
Y jl
0

)
+ Xl−1 (10)

In eq. (10), we have applied the nonlinear function f many
times. Because f has no trainable parameters, this structure
does not add parameters but improves the network represen-
tation ability. Similarly, We can add another limited condition
on eq. (9) to get the PWNets form:

Xl = f (W j
l ? X jl−1)+ Xl−1 (11)

where the matrix W is grouped by rows. The limited condi-
tions in eq. (10) of WPNets and eq. (11) of PWNets are an
inverse process, but they can both achieve a good perfor-
mance compare to other networks. This inverse process has
the same nature: First, the convolution kernel is divided into
G groups, that is, the convolution kernel matrix is divided
into many blocks, and then add some restrictions to these
block matrices. These restrictions contain nonlinear func-
tion f , and f is applied to the block matrix to make it
have more nonconvex representations. Because the activa-
tion function does not have trainable parameters, we do not
introduce additional hyperparameters. No matter what the
method of information fusion is, they actually achieve the
same effect: making the overall channels information more
diverse, allowing each channel to be more discriminative.

Each layer of WPNets use the whole channel information
to update the local channel information, which conforms
to the nature of the convolutional neural network (CNN):
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FIGURE 3. The rectangle in this figure represents the input or output features of the layer, and the quadrilateral with transition colors represents
the convolution process. The left side of the figure represents the traditional single convolutional layer, whose input and output channels are
C1 and C2 respectively. And the right shows the process of unfolding a single convolution layer into 6 layers, and the number of channels in each
layer increases gradually.

the layer in CNN uses many groups of convolution kernels,
and each group of convolution kernels requires learning to
represent differently from other groups. Each convolution
kernel is convolution with all the channels in the front layer,
and then a summing operation is performed to produce a new
posterior layer channel. The WPNets seem to be amplifying
this process between layers: the channels are divided into
many groups corresponding tomultiple groups of convolution
kernels, and then the whole block performs a depth fusion
process between the groups, equivalent to the convolution
process of convolution kernel. The information of the sliding
window in the convolution kernel is different when sliding.
In WPNets, however, the structure of the traditional layer is
designed to be deeper, so that each layer will have a set of
information that is updated. This allows the input information
to be slightly different in each group’s convolution process,
so the whole block is equivalent to a large sliding convolution
process.

WPNets are like a convolution kernel sliding process,
gradually changing each part of the channel. PWNets are
like the process of adding all channels to generate new back
channels after the sliding of the convolution kernel, which
delays the addition process of multiple channels to generate
new channels, and gradually generate channels of the new
layer. So the block structure of PWNets will bemore powerful
to represent information than the traditional convolutional
layer.

D. THE PARAMETER OF THE BLOCK STRUCTURE
We assume that the convolutional kernel transfer an input
layer with the channels number of C1 to a output layer
with the channels number of C2 (C2 ≥ C1). So we have
C j1

1 = C j2

2 = · · · = C jG

G =
C2
G , where j1, j2, · · · , jG is an

permutation of G, this means that we can start with any of
these groups to unfolded the convolutional layer into a block
structure. We will explore the changes in the parameters of a
convolutional layer convert into a block structure. We assume
the parameters of the convolution kernel which used in above
two structure areK (if we use 1×1 convolution,K = 1, if we
use 3 × 3 convolution, K = 9). Obviously, the parameters

of the traditional conventional layer are KC1C2. We can
calculate the parameters P of the block structure in follow
equation:

P =
G∑
j=1

K (C1 + (j− 1)
C2 − C1

G
)
C2

G

= K
C2

G
· GC1 + K

C2

G
·
G(G− 1)

2
·
C2 − C1

G

= KC1C2 + K
(G− 1)
2G

C2(C2 − C1)

≤ KC1C2 +
1
2
KC2(C2 − C1)

=
1
2
KC2(C2 + C1) (12)

From eq. (12), we can find that the block structure and the
traditional single convolution layer have the same parameters
if C2 = C1. In fact, this is common in present networks.
If C2 > C1, the number of the parameters of the block struc-
ture will be 1

2KC2(C2−C1) more than the convolutional layer
if G becomes larger. Fig. 3 shows the process of unfolding a
single convolution layer into 6 layers.

If C2 < C1, the block has to project the channels from
C1 to C2, so there will be some channels that do not have
the corresponding channels for addition because the bypass
structure in eq. (1) does not compress the channels. When
using bypass structure, we can choose to drop out some
channels of the group if the lost information accounted for
the proportion is not large, or add a group of channels to
the latter group in overlapping ways, which maps multiple
channels of the former group to one of the latter groups. This
allows all information flow from the front layer to the back
layer without introducing additional parameters.

From the above analysis we can conclude that the parame-
ters of the two structures are almost the same. This method
just divide the convolutional kernels into G groups, this
means the traditional convolutional layer can be expanded
into whole-part block forms by divides the channels into
G groups. So we can think of the traditional convolutional
layer structure as special whole-part block with a group
number of G = 1, where G also represents the depth of the
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block structure. In other words, the more the groups,
the deeper the network, while the network parameters remain
unchanged. In one extreme case, the layer with the number of
channels C is divided into C(G = C) groups, which would
cause the neural network spreading rapidly to hundreds of
layers with minimal parameters.

IV. NETWORK ARCHITECTURES
In this section, we introduce the network architecture of
WPNets and PWNets in detail. Table 1 describes the general
architecture of the network.

TABLE 1. General network architecture of WPNets and PWNets. The
number of group in block i is gi . Note that each ‘‘conv’’ layer shown in
the table corresponds the sequence BN-ReLU-Conv, and the ‘‘avg’’ is
shorthand for average.

A. INITIAL LAYER
The initial layer is important to determine the number of
groups G. We assume that the number of channels in the
initial layer is C , we can choose any integer as the number
of groups G if C is divisible by it. Of course, we can also
precisely set the number of channels in each group. For
simplicity, we specify the number of channels per group to
be C ′ = C

G .

B. BLOCK
1) WPNets BLOCK
The 1 × 1 convolution and 3 × 3 convolution are used
to implement the compression process in WPNets block,
which is called bottleneck layers in ResNets [4]. The 1× 1
convolution in composition function f reduces the input
to 4C ′, and then the followed 3 × 3 convolution compresses
the previous output to C ′. Note that composition func-
tion f include BN [21] and ReLU [22] operations before each

convolution layer. The number of group channels can be
increased in the compression process, making it R times as
many as the original channels, where R is called growth rate.
In this paper, we use R = 2 in the WPNets architecture.

Different from the analysis in section III-D, the block of
WPNets will reduce the number of parameters as the number
of group increases. This is because we use 1 × 1 convolu-
tion in the compressed function, which first compresses the
number of channels to 4C ′, and then compresses it toC ′ using
3× 3 convolution. IfG is increased, C ′ will be reduced. 1×1
convolution will be used more, and 3× 3 convolution will be
used less. The parameters of 1× 1 convolution are much less
than the parameters of 3 × 3 convolution, the parameters of
the block will decrease with the increase of the number of the
group.

2) PWNets BLOCK
Contrary to WPNets, the 3 × 3 convolution is first used to
amplify each group of channels to 4C ′, and then the 1× 1
convolution is used to amplify the previous output into C
channels. Finally, The amplified channels information of
the group are added to the original channels. In this case,
the number of channels in the block will remain unchanged.

We can use more filters to increase the number of channels
in the network, and also can leave a part of the amplified
group channels, and concatenate this part of the channels
directly into the back layer to achieve the increase the number
of the channels. The addition operations are used for overlap-
ping channels the number of which is equal to G− 1 times of
the number of group channels. The concatenation operations
are used for the redundant channels is equal to the number of
group channels, so the number of the growth channels in each
group is equal to C ′.

C. TRANSITION
In the end of the block, the 1 × 1 convolution is used to
implement the features information fusion and use average
pooling with stride 2 to down sampling features. The number
of channels will be increased by 2 times if the number of
channels does not increase in the block structure, otherwise
the number of channels will remain unchanged. We find this
structure is every useful in the network of group convolution,
and it was used behind each block, except for the last one.

V. EXPERIMENTS
A. DATASETS
We use representative benchmark datasets: CIFAR-10 [24]
and CIFAR-100 [24] to evaluate the performance of our algo-
rithm. CIFAR-10 and CIFAR-100 each contain 32× 32-pixel
color images, consisting of 50k training images and 10k
testing images, respectively. In CIFAR-10, it includes
10 classes, and CIFAR-100 includes 100 classes. Channel
means are computed and subtracted in preprocessing.We also
apply standard augmentation [4], [5], [16], [25]–[29]: hori-
zontal flipping and translation by 4 pixels are adopted in
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TABLE 2. Error rates (%) on CIFAR and SVHN datasets. C is the number of channels in the initial layer, and G is the number of groups in each block. ‘‘+’’
indicates standard data augmentation. Models that contains too many parameters are not presented in this table.

our experiments. We denote this augmentation scheme by
a ‘‘+’’ mark at the end of the datasets name (marked as
C10+ and C100+).

We also conducted more studies on the SVHN [30]
datasets. It is a real-world dataset obtained from house
numbers in Google Street View images. It consists 10 classes,
where 73257 digits for training, 26032 digits for testing,
and 531131 additional. All digits have been resized to
32-by-32 pixels. In order to facilitate comparison with other
networks, we did not use data augmentation like common
practice [25], [26], [29], [31], and separated 6k images from
the training set as verification sets. We follow [17], [29] and
divide the pixel values by 255 so that these pixel values are
in the range [0, 1].
The ILSVRC 2012 classification dataset [32] contains

1.2 million images for training, 50k for verification, and a
total of 1000 pre-defined category labels. We use the same
data augmentation scheme as [7] for the training image and
apply 224×224 center cropping to the image during testing.
On this data set, in order to make a better comparison with
DenseNet [7], we use DenseNet’s [7] network architecture,
but replace its block structure with the block structure of
WPNets and PWNets, while keeping all hyperparameters
consistent with DenseNets [7].

B. TRAINING SETTING
We use random gradient descent (SGD) to train all networks.
On CIFAR [24], we trained 300 epochs using batch size
of 64.While on SVHN [30], the network is trained 40 epochs.
The initial learning rate is set to 0.1, which reduces the
learning rate by a factor of 10 at 50% and 75% of the
total number of training epochs. Following [7], we use a
weight decay of 10−4 and a Nesterov momentum [33] of 0.9.
A dropout [34] layer was added after each convolutional
layer except the first, and the drop rate was set to 0.2.
On ImageNet [32], we train models for 90 epochs with a

mini-batch size of 256, and other hyperparameter settings are
the same as DenseNets [7].

C. CLASSIFICATION PERFORMANCE ON CIFAR AND SVHN
The efficiency of parameters is the key to our method.
We observe that even without a large number of parameters,
our models obtain accuracy that is comparable with many
state-of-the-art methods (Table 2).

1) WPNets ACCURACY
The number of channels will be increased in each layer of
the block. We find that such a design makes the performance
of the network slightly lower, but the number of parameters
of the network is greatly reduced. The number of initial
channels C corresponding to the table 2 are 50, 100, and 200,
and the number of groupsG in each block are the same. After
we compare the tradeoff between parameters and perfor-
mance, it shows that our models obtain comparable results
even with far fewer parameters compared to many state of
the arts. For example, our WPNets with 1.4M parameters
outperforms ResNet [4] and some of its variants, such as
Wide ResNets [17], ResNet with Stochastic Depth [29] and
ResNet with pre-activation [35]. This model also achieves
good performance on the SVHN [30] datasets. The error rate
is 1.7%, exceeding almost all networks which with more
parameters. We can find that performance of WPNets with
C = 100 and G = 25 surpasses the shallow model which
with C = 50 and G = 10 on CIFAR [24] datasets, but its
performance does slightly increase on SVHN [30] datasets.
We summarize that deep model tends to overfit to the training
set. These experimental results show that the whole-part
structure is very effective.

2) PWNets ACCURACY
To test the performance of PWNets, we trained a network
with 0.3M parameters, and we found that the perfor-
mance exceeded some ResNets and its variants with
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1.7M parameters on CIFAR [24] datasets without data
augmentation. On the SVHN datasets, it achieved the same
result as Densenet-BC with 0.8M parameters. The PWNets
with C = 200 and G = 50 gained a good tradeoff between
performance and parameters. This model outperformed all
models with the same parameter level and achieved the state
of the art on the SVHN datasets. These results indicate that
PWNets utilize parameters more effectively than alternative
model architectures.

D. CLASSIFICATION PERFORMANCE ON ImageNet
We replace the block structure in DenseNets [7] with the
block structure of WPNets and PWNets, so the depth of
the three networks is the same. It should be noted that the
initial number of channels needs to be set for WPNets and
PWNets. As can be seen from Figure 4, the network param-
eters increase (the number of connections in the network
is increased), while the performance has slightly improved.
We carefully designed the initial number of channels for
WPNets and PWNets to ensure they have the same order
of magnitude as DenseNets [7]. As analyzed above, WPNets
and PWNets will have more connections than DenseNets [7],
which ensures that they can achieve better generalization
performance. For example, when the amount of parameters
is almost the same, the performance of the two networks is
improved compared to DenseNets [7].

FIGURE 4. Performance comparison of various network structures on
ImageNet. L represents the number of layers, G represents the number of
blocks in DenseNets, and represents the number of groups in
WPNets or PWNets. C represents the initial number of channels for
WPNets and PWNets. When the grouping of each block structure is the
same, the depths of WPNets, PWNets, and DenseNets are the same,
so L and G in the figure are shared by three networks.

E. EFFECT OF DEPTH ON PERFORMANCE
It has been shown that deep model classes have an expo-
nential advantage to represent certain natural target functions
when compared to shallow model classes. But, this situation
is not useful in all cases. Sun et al. [36] showed that with
the increasing depth, the test error of neural networks may
first decrease, and then increase. We conduct experiments to
demonstrate the relationship between the groups/depth and

performance of the network proposed in this paper. We do
not use the 1×1 convolution used in the compress function of
the WPNets and amplification function of PWNets. We use
the 1 × 1 convolution in transition structure to expand the
number of channels by 2 times, so the number of channels in
each block will remain unchanged. This ensures that the two
networks have the same amount of parameters, total 2M in
this experiments. We compare the two kinds of blocks with
groups numberG value in {1, 5, 10, 25}. Note that theG = 1,
there are the traditional networks and the number channels in
each block are keep unchanged.

TABLE 3. The influence of the depth of WPNets on its performance.

TABLE 4. The influence of the depth of PWNets on its performance.

The performance in CIFAR [24] datasets are showed in
table 3 and 4. From these two tables, we can find that with the
group’s number growthing, the performance is almost always
improving. But we also find that the performance of the
network is saturated in some cases. For example, the WPNets
with a group number of 25 do not have a higher perfor-
mance than group number of 10 on C100+. And in C10+,
the performance of PWNets with a group number of 25 is a
little worse than the group number of 10.When the number of
groups/depth is the same, WPNets and PWNets can achieve
very close performance, which shows that the two structures
have some potential symmetries.

F. PARAMETER EFFICIENCY
In order to prove the effectiveness of network parame-
ters, we use very few parameters to train WPNets and
PWNets with different depth. These network structures are
mainly compared to ResNets [4]. We want to replace the
block structure of ResNets [4] with the block structure of
WPNets or PWNets without sacrificing performance. In the
original implementation of Resnets, it is divided into 3 block,
and the number of channels for each block is 16, 32, and 64.
The WPNets and PWNets we implement are very similar
to ResNets [4]. We find that if the number of channels in
the two networks remains the same as that of ResNets [4],
the parameter of our model is less than 0.1M, which will
be underfitting in CIFAR-10. So, we expand the number of
channels for each block in our model by 2 times, and the
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number of channels for each block is 16, 32, and 64. In this
way, our network still has minimal parameters, such as the
parameters that PWNet-52 has 0.15M, which has less than
10 times the amount of parameters than Resnets [4].

TABLE 5. The effectiveness of network parameters. ∗ indicates results run
by ourselves.

In Table 5, we found that ResNets [4] has a over fitting
problem on C10: the performance of ResNet-110 [4] is lower
than that of ResNet-56 [4], but on C10+ this is the oppo-
site. This phenomenon can also be found on WPNet: the
increase in network depth only gains performance in C10+,
but has a significant performance decline on C10. In general,
our network can achieve almost the same performance as
ResNets [4] under the condition that the number of layers is
not very different from that of ResNets [4], and all of them
exceed the performance of HighwayNets [5] and FitNets [27]
with more parameters. This further shows that our network
structure can replace ResNets’s network structure, which can
not only train and infer more quickly, but also greatly reduce
the amount of parameters.

VI. DISCUSSION
We will discuss the relationship between the network archi-
tecture proposed in this paper and other network archi-
tectures. The channels information relationship is shown
in fig. 5, each line in the figure being a group of features. The
brackets ‘‘[ ]’’ are the convolution operations, to which the
line it is connected add or concatenate the convolution results
into the sequence layers.

We can find that the ResNets [4] adds all the channels of
the front layer to the back layer, and the information fusion
between the front and back layers is accomplished by the
addition operation. DenseNets [7] transfer the information
directly to the back layer. We can simply change the addition
operation of ResNets [4] into the concatenation operation to
implements the DenseNets [7].

A. DIFFERENT FROM ResNets
While Both WPNets and PWNets divide the channels into
G groups, WPNets learns only the residual structure of one
group at a time, until the whole block structure learns the
residual structure. PWNets add a group of channel infor-
mation to the whole channel information, which is a partial

FIGURE 5. Channel information flow in various network architectures.
(a) ResNets [4], (b) DenseNets [7], (c) WPNets, (d) PWNets. ‘‘+’’ represents
the addition operation of the channels, the line with arrows represents
the flow direction of the channel information, and brackets represent
complex functions that contain convolution operations and other
operations (e.g., BN [21] and ReLU [22]).

to whole residual structure. In the structure of WPNets and
PWNets, j−1 times residuals have been added before convo-
lution operations are performed in group j. The residual
information comes from the previous j − 1 groups. Because
the addition operation of the residual structure is a linear
transformation between the channels, the group j can utilize
the information of other j− 1 groups.

B. DIFFERENT FROM DenseNets
We first analyze the DenseNets [7] and its equivalent form.
Except the transition layers, the intermediate layers of
DenseNets [7] are obtained by concatenating all previous
layer. If we decompose the block into some group convolution
structure then add to produce a new layer. This equal form
explicit shows all the connections between new layer and its
previous layers. In the block, the number of connections from
the input layer begins with 1, increased by layer by L, so the
layer l th will have L connections to its previous layers, which
sums up to L×L

2 .
In WPNets, the group number is equal to that of the layers

in the block of DenseNets [7]. All group features are used
as the input layer to connect to one of the groups of it. This
group features will be added by the convolution results of
other group’s layer. So just the added group’s features have
changed, the others will flow to its sequence layers without
changing. We did it in an iterative way until all the features
of the groups have changed. We can find the connections of
above nets architecture will be up to the number ofG×G, half
of it being the connections between groups, and the other half
the connections between layers. The additional connections
will help improve performance.

VII. CONCLUSION
In this paper, we proposed two network architectures by
analyzing the whole and part of the channel relations
in convolutional neural networks, which we refer to the
whole-to-part connected networks (WPNets) and part-to-
whole connected networks (PWNets). In WPNets, the whole
channel information is compressed into one of the groups
in each layer, forming a whole to part residual structure.
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Contrary to the compression process, PWNets amplifies the
partial channel information to the whole channel information,
forming a part to whole residual structure. The compression
and amplification processes of these two structures contain
addition and concatenation operations, in which the addition
operation forms a residual structure, and the concatenation
operation ensures that the original information is passed
to the back layer. After we compare the tradeoff between
parameters and performance, it is shown that our models
obtain comparable results even with far fewer parameters
compared to many state of the arts. and the two structures can
replace the traditional convolutional layer while keeping the
parameters slightly increased or unchanged. We are going to
study dynamic neural networks where the number of network
layers increases and the parameters remain unchanged.
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