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Abstract: This study explores whether neural networks can classify multiple samples simultaneously in a forward process.
Therefore, a multi-input multi-prediction network architecture has been proposed. The authors call this method a multi-sample
inference network (MSIN). In addition to maximising the use of network shared parameters, the network can also use multiple
samples for training. MSIN allows multiple samples to be randomly combined to act as data augmentation, and the random
combination of corresponding labels can regularise the network as a loss regularisation, which makes MSIN have better
generalisation performance. In contrast, category expansion is a problem that is difficult to solve because neural networks can
only predict a fixed number of categories. The network proposed in this study can solve the category expansion problem by
expanding the initial layers and the final layers. It is trained by using samples of multiple domains at the same time to ensure
that the network has no significant decline in the predictive performance of the existing categories. The MSIN method can also
be applied to the generative adversarial network to enable it to simultaneously generate samples of multiple sample domains.

1Introduction
Can a neural network separate two categories at the same time in a
forward process? If so, what characteristics should the network
have? The traditional neural network can only predict one sample
in one forward process. In this paper, we design a method that can
classify two or more samples, which can greatly reuse the features
between the network layers and reduce the running time. This
paper explores the simultaneous classification of two samples of
the same task or different tasks into corresponding classes while
ensuring that the accuracy is the same as the single-sample
classification.

The network architecture is shown in Fig. 1. The architecture is
mainly divided into three modules. The first module is the initial
block, which mainly adapts multiple samples to the same
intermediate features. For example, images of different sizes use
different convolution kernels to produce the same size of
intermediate features. The middle feature module is a shared block
so that the two samples share the computation of the forward and
backward processes. The final block produces different high-level
features, producing the corresponding categories for multiple
samples. 

There are many works that also use multiple samples to train
the network, such as DisturbLabel [1], SamplePairing [2], and
Mixup [3]. All these works have combined training samples and
their labels to some extent. This makes training data not only for
data augmentation but also for regularisation effect. As multi-
sample inference network (MSIN) uses multi-sample training like

these methods, MSIN can be combined with these methods to
make neural networks produce better generalisation performance.
Some works using deep learning to study sample similarity
involves inputting two samples [4] or three samples [5] into the
network separately or simultaneously inputting two samples [6]
into the network to calculate similarities between samples.
Different from these methods of training with multiple samples, the
MSIN also uses multiple samples for inference, so that a single
neural network can simultaneously predict multiple samples in one
forward process. The neural network can infer about two mixed
samples at the same time, which reveals a new feature of the neural
network: the neural network can separate the mixed samples in the
inference process.

There are also many efforts to make neural networks have better
generalisation capabilities by designing more efficient loss
functions. FaceNet [7] uses a triple loss to make the intra-class
distance larger than the inter-class distance and minimises the
Euclidean distance of the positive pair to make it lower than the set
margin. A centre loss [8] was proposed to improve the original
softmax loss, which introduces cosine similarity to distinguish
between different categories, making it more consistent with the
sample distribution. Compared with the introduction of cosine
similarity, the angle-based L-Softmax [9] loss can more accurately
maximise the inter-class differences, so that a more robust model
can be obtained. As the final layers of the MSIN are separated from
each other, it can use a variety of loss functions. In the
implementation of MSIN, softmax loss, L-Softmax [9] loss, and
additional domain-based similarity loss are used as the loss
functions.

The problem of category expansion has always been a problem
in recognition problems. We can also use the properties of the
MSIN to solve the category expansion problem of the network. As
we all know, neural networks can only predict a fixed category of
networks, which cannot be used to correctly predict categories
outside its prediction range. Retraining the network will consume
huge resources and time, and is not desirable for many situations.
This paper proposes a channel combination method to extend the
categories of neural networks. This not only enables neural
networks to predict new categories but also does not have
significant performance degradation in the prediction of existing
categories.

Fig. 1 Multi-category predicted network architecture that shares the
forward process. The neural network is divided into three modules, namely
the initial block, the shared block, and the final block
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Can the generative adversarial network (GAN) [10] generate
samples from two different sample domains simultaneously? To
achieve this, the MSIN method is extended to the generator and
discriminator of GAN [10], enabling its generator and
discriminator to simultaneously generate and discriminate two or
more samples. We call the network that can generate multiple
samples at the same time as multi-sample GAN (MSGAN), whose
generator and discriminator are shared by multiple samples to the
greatest extent, and it can generate more diverse patterns between
different sample domains.

The main contributions of this paper include the following:

• A MSIN architecture has been proposed, which demonstrates
that neural networks can predict multiple samples
simultaneously in a forward process without confusion.

• MSIN can greatly reuse the features between the network layers
and reduce the running time while ensuring that the accuracy is
slightly lower than the single-sample classification.

• The properties of the MSIN can be used to solve the category
expansion problem of the neural networks.

• The MSIN method can be extended to GAN [10] to enable its
generator to produce a more diverse pattern.

The paper is organised as follows: first, related work will be
introduced in Section 2. Then, the architecture of the MSIN will be
detailed in Section 3, and the results of the experiment will be
presented in Section 4. Next, the nature of the MSIN is discussed
in Section 5. Finally, the paper is summarised in Section 6.

2Related work
The neural network has a lot of hyperparameters and millions of
training parameters so that it has a strong fitting ability and can
even fit random noise [11]. Therefore, it is a challenging job to
reduce the overfitting of neural networks. There are many factors
that influence the generalisation ability of neural network from
different aspects such as designing more effective network
structure [12–18], exploring more effective activation functions
[19–23], optimising network parameters [24–26], processing
training data [15, 27], and reducing model complexity [28–32].

Recently, many works use multiple samples to train the
network. In DisturbLabel [1], a small number of sample labels
were randomly replaced with other labels. This is a regularisation
method that is used at the loss layer to allow the neural network to
avoid overfitting and enhance its generalisation performance. In
SamplePairing [2] and Mixup [3], a method of training the neural
network using two samples simultaneously is proposed.
SamplePairing [2] randomly picks one sample in the training set to
add to the original sample and uses the original sample's label to
train the network. Mixup [3] uses a random value to weigh the two
samples and their corresponding labels. All of the above methods
have some effect of data augmentation and regularisation, and they
can achieve better generalisation performance than empirical risk
minimisation [33]. SamplePairing [2] and Mixup [3] are very
similar to traditional data augmentation methods, but they are also
different. SamplePairing [2] adds other samples from the training
set as noise to regularise the neural network during training. Mixup
[3] does not explicitly use the original sample training network, but
the convex interpolation of the original sample. There are also
some works that use neural networks to compare similarities
between samples. The Siamese network [4] is mainly used for face
verification, which learns the similarity measure between two
samples by optimising a discriminative loss function. It outputs a
similarity value to determine if two faces are from the same
category. The authors in [5] proposed a triplet loss to train a
network that formulates a continuous upper bound on empirical
loss, with a new form of loss-augmented inference designed for
efficient optimisation with the proposed loss on the Hamming
space. The authors in [6] improve the original Siamese network in
which two samples are simultaneous inputs to the network instead
of being entered separately. Their main purpose is to learn a
general similarity measure function to compare image patches.
These networks are designed to measure the similarity of samples

and cannot be used to predict the category of sample. Conversely,
our network not only measures the sample similarity but also
accurately predicts the category of sample and correctly
distinguishes the domain of the sample.

An efficient loss function not only allows the model to have
better generalisation performance but also makes it more robust.
FaceNet [7] maximises the inter-class distance and minimises the
intra-class distance of the samples by designing a triple loss. It
keeps samples between different categories have a large margin,
and samples between the same categories are as close as possible.
The centre loss [8] involves simultaneous learning of a centre for
deep features of each class and penalising the distances between
the deep features and their corresponding class centres. L-Softmax
[9] loss uses an angle-based similarity metric to explicitly
encourage intra-class compactness and inter-class separability
between learned features. Since MSIN can distinguish between
samples in different domains, a domain-based similarity loss
function is incorporated into the MSIN network, which can better
describe the differences between samples.

Extending the data set and regularising the model can reduce
the overfitting of the model from different aspects. Some data
augmentation techniques directly distort data space, such as
translation, rotation, flipping, cropping, adding noises etc. Other
methods use slightly more sophisticated methods such as
PatchShuffle [34] which divides the sample data into several
different patches, sorting the pixels in each patch according to a
certain rule, while keeping the overall structure of the image intact.
The authors in [35] randomly select a rectangular area in the
image, and fill the area with Gaussian noise, making the original
information of the area as blocked, forcing the neural network to
infer about the part of the information. SamplePairing [2] randomly
picks a sample in the training set and adds it to the original sample
to produce a new sample. These methods make the processed
image slightly different from the original image, although the
augmented data may not be in line with the original sample
distribution or independent of the original sample. However, this
can make the neural network learn other models related to the
original sample, which can make the neural network have a more
diversified representation ability and thus have better
generalisation performance.

GAN is proposed in [10], which generates a sample through the
generator, and then uses the discriminator to determine whether a
sample is real or generated. The discriminator can only be fooled
when the sample generated by the generator is sufficiently real, and
the discriminator will try to find those samples that are generated
by the generator. The generator and discriminator are doing a zero-
sum game, and the final result is a Nash equilibrium between them.
We apply the MSIN method to the GAN to enable it to
simultaneously generate samples of multiple sample domains.

3Method
3.1 MSIN architecture

How to classify two or more samples simultaneously in a forward
process instead of using multiple forward processes to sequentially
input samples into the neural network? A MSIN architecture is
designed to predict multiple samples simultaneously. The
architecture is able to accurately classify multiple samples while
predicting the domains corresponding to them, which enables the
same network to be used on different sample domains. Fig. 1
schematically depicts the MSIN architecture that can predict two
samples simultaneously. The architecture is mainly divided into
three parts: initial block, shared block, and final block.

3.1.1 Initial block: The initial block mainly produces the same size
features map so that the features can be shared in the shared block.
This block mainly includes one or two convolutional layers. When
the feature size difference is large, we can add some convolutional
layers with large stride and some pooling layers for downsampling
it. According to the different situation of inputs, the initial layers
can be divided into two types. First, each sample will be an
independent input to the neural network, K samples will have K
independent initial layers. Another situation is that the initial layers
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of the network have common low-level features, so the initial
layers can combine these samples with a concatenate or add
operations. These operations remove the initial block from the
network, leaving only the shared block and the final block.

3.1.2 Shared block: The shared block is the main part of the
network. It carries the main calculations and contains most of the
convolutional layers of the network. These features will be shared
by multiple simultaneously trained samples. The module can be
implemented using a variety of network architectures, such as
ResNet-like [36] or DenseNet-like [17], making the module more
scalable and flexible. This module includes almost all of the MSIN
convolution and pooling layers, so it takes up almost all of the
computational overhead of the MSIN. Reducing the number of
layers in the module can speed up the inference of the network, but
it will reduce the network performance, so the module makes a
compromise between the speed and performance of the network.

3.1.3 Final block: The final block has the highest level of
abstraction and will produce the corresponding category for the
sample. In different tasks, the final block can be used to train the
task-related abstract features, which has higher performance for
specific tasks. The final block may or may not contain a
convolutional layer, which may result in a slight difference in
performance. If the network does not contain the initial block and
the final block do not contain the convolutional layers, the network
is used as a benchmark for performance comparison (MSIN-B),
which is the network with the most common features.

3.1.4 Variants of MSIN: The shared block is the key to the
accuracy of the classification of the multiple categories. The
number of the initial block and final block has a direct impact on
the prediction accuracy, but it will make the network have more
parameters and consume more computation. Different designs of
the initial and final block of the basic network will result in
variants of other MSINs. The final block of MSIN-B is set to two
separate fully connected (FC) layers, using two concatenation
samples as input layers. That is, except for the final FC layers, the
remaining layers are shared layers. The network that uses a
convolution layer as an independent structure in the initial block is
denoted as MSIN-I1 (the number represents the number of layers),
and the network that uses one block structure (two convolution
layers) as an independent structure in the final block is denoted as
MSIN-F2 (the last full connection layer is not included). Using
different methods for multiple samples as input to the network will
also result in very different classification performance. For
example, taking two added samples or using two concatenated
samples as inputs will yield different multi-class performance. We
record the network structure of the two added samples as the input
layer of the standard network as MSIN-P. Various MSIN variants
are shown in Fig. 2, and their performance comparison is shown in
Section 4.3. 

3.2 Multiple categories prediction

In this section, we will explore to what extent the neural network
confuses multiple samples. To further explore how neural networks
can classify multiple categories simultaneously in a forward
process while reducing computational time and computational
resources. The neural network is designed with multiple inputs and
multiple outputs. The middle block of the neural network is
designed as a shared structure. The network architecture used in

this section is given in Fig. 1. The ith classifier is denoted as Ci,
and the total number of classifiers is denoted as K. We further
denote the sample to be classified by the classifier Ci as xi, its label
as yi, and its probability distribution as pi. The difference with the
traditional network is that the final layers of this network will
output the prediction of multiple domains. If the samples are from
different domains, we will record their corresponding domain as
Di.

The architecture of the MSIN has been determined, and the
most important thing is to design the loss function of the MSIN so
that the loss function can ensure that the MSIN does not overfit a
certain sample domain during training. Traditional single-sample
inference networks generally use a softmax loss function for
training. The formula for the softmax loss function is

Lsoft =
1
N

∑
i = 1

N

− log
ex[y]

∑ j
Z ex[ j]

= Ey ∼ p(y)[logC(y)]

(1)

where x[y] denotes the yth element (y ∈ [1, Z], Z is the number of
classes) of the vector of class scores C, and N is the number of
training data. As MSIN has multiple output layers to predict
multiple input samples, softmax loss is used directly for each
output layer to reduce the cross-entropy of each sample domain. By
adding the softmax loss of all sample domains directly, the loss
function of MSIN which used to train multiple samples is
reformulated as

Lentro = ∑
i = 1

K

λiEyi ∼ pi(yi)[log Ci(yi)]

s . t . ∑
i = 1

K

λi = 1

(2)

where λ controls the relative importance of the multiple objectives,
and K is the number of the sample domains. It can take a fixed
constant or take a random value in each min-batch, so that the final
layers can be alternately trained. The effect of the value of λ on
MSIN performance will be discussed in Section 5.2.

In order to explicitly encourage intra-class compactness and
inter-class separability between learned features, MSIN requires a
large margin loss function. The large margin loss is added to each
classifier of the MSIN, which is formalised as

Lmargin =
1
K

∑
i = 1

K

Eyi ∼ pi(yi)[max(0, M − ∥ yioi ∥1)] (3)

where oi is the output of the classifier Ci, and M is the large margin
value. If the training samples are from the same domain or similar
domains, we hope that the MSIN classifiers will have smaller
differences for similar samples and larger differences for different
samples. Therefore, we need to regularise the output of each MSIN
classifier. The formalisation of this regularisation loss function is

Lreg =
2

K(K − 1) ∑
i ≠ j, i < j

K

Eoi ∼ pi(Ci(oi)) ∥ oi − oj ∥
2

(4)

The above is all the loss functions needed to train the MSIN. Add
them together to get the total loss function

Ltotal = β1Lentro + β2Lmargin + β3Lreg (5)

where β1, β2, and β3 are used to balance the corresponding loss
function. The total loss is used for backward propagation. On the
one hand, in the process of back propagation, the weight of each
filter will be adjusted by multiple feedback signals, which
regularises the neural network and can effectively alleviate the
overfitting problem of neural networks. On the other hand, each
sample will be somewhat confused with each other, which is

Fig. 2 Architecture of the MSIN variants
(a) MSIN, (b) MSIN-I, (c) MSIN-F
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detrimental to their prediction accuracy. In Section 3.3 we will
introduce a domain-based loss function to further expand and
optimise Ltotal.

3.3 Sample domain prediction

If the K input samples of the MSIN are from the same domain, the
number of mixed samples will be NK. So many mixed samples will
play a role in data augmentation, and the combined loss function of
the corresponding labels will also have a regularisation effect.
When using multiple samples to train MSIN, there will be some
confusion between the samples, and we use this confusion to verify
what exactly the MSIN does. If the MSIN can predict multiple
categories of input samples at the same time, it indicates that the
neural network using MSIN training can learn multiple samples at
the same time and can avoid the confusion among multiple
samples. This shows that MSIN is actually a regularisation method.
If the MSIN can not predict more than one sample at the same
time, it can only have good predictive ability for one type of
sample, indicating that the synthetic sample is used as a new
sample to be fitted by the neural network. In the inference phase,
the test sample tends to be classified into the category of training
samples that has the greatest similarity to it. This shows that MSIN
plays a role of data augmentation. The experiments in Section 4.8
demonstrate that multiple samples used for MSIN training not only
serve for regularisation but also serve for data augmentation.

If the input samples are from different domains, the initial block
cannot determine the domain to which the sample corresponds, i.e.
the MSIN cannot determine whether the sample x1 is from the
domain D1 or from the domain D2, and the same is true for the
sample x2. This causes the MSIN to confuse multiple samples of
the input. For the MSIN to be able to predict different sample
domains, an additional classifier D needs to be added to the MSIN
to enable the MSIN to predict the domain Di of the sample xi. For
K input samples, the classifier needs to predict KK sample domains.
So the cross-entropy loss and the additional large margin loss are
used to train the domain-based classifier, and the loss function can
be formalised as

Ldomain = Eyi ∼ p(yi)[log D(yi)]

+γEyi ∼ p(yi)[max(0, Md − δ∥ yiod ∥1)]

where δ =
1, od ∈ Di

−1, od ∉ Di

.

(6)

The od and Md in (6) are the outputs and large margin value of the
domain-based classifier D, and γ is used to balance the contribution
of two loss functions.

Using NK training data to generate KK categories, the domain-
based classifier will produce a large overfitting of these samples.
L-Softmax [9] loss is used as an optional loss function to train each
sample-based classifier Ci so that each class can be well separated
in sample space. The formalisation of L-Softmax [9] loss function
is

Llsoft = ∑
i = 1

K

λiEyi ∼ pi(yi)[log Li(yi)]

s . t . ∑
i = 1

K

λi = 1

(7)

where Li is called the large margin classifier that uses the L-
Softmax [9] loss. Equation (7) simply replaces the softmax
function of (2) with the L-Softmax [9] function. Therefore, the
total loss function of MSIN is

Ltotal = β1Llsoft + β2Lmargin + β3Lreg + β4Ldomain (8)

Comparing (8) with (5), it can be found that the original Lsoft was
replaced by Llsoft and the Ldomain loss was added. Using (8) as the

loss function of MSIN, not only obtains better classification
performance but also accurately predicts the domain corresponding
to each sample.

3.4 Sample domain expansion

In this section, we consider using MSIN for sample domain
expansion. We assume that x1 is sampled from the domain D1, and
x2 is sampled from the domain D2. If traditional methods are used
to predict two different domains, these two different domains will
generally be combined into the same domain, so that the total
number of categories of the combined domains is the sum of the
categories of the two domains. Although using this method can
also train two different domains of the sample, there are two
disadvantages compared with MSIN: the method cannot
distinguish the domain from which the training sample comes
from, and it is difficult to expand the new category. The expansion
of new categories will result in a sharp decline in the prediction
accuracy of neural networks for existing categories. Using MSIN
architecture can not only solve this problem well but also can also
train and predict samples in two different domains at the same
time. The MSIN allocates different initial layers and final layers for
samples in different domains. When adding samples for new
domains, it is only necessary to simply extend the initial layers and
the final layers. Most importantly, neural networks need to be
finetuned when expanding new categories. When the traditional
method expands new categories, it will cause the neural network's
prediction accuracy of existing categories to decrease significantly.
However, the MSIN architecture can guarantee that when the new
category is expanded, the prediction accuracy of the existing
category is only slightly declined.

MSIN has two training methods. One is to train multiple
prediction tasks synchronously (MSIN-S), and the other is to
perform asynchronous training (MSIN-A) on each task. The reason
why the two kinds of training methods are proposed is that the
distribution of data is very different. For example, a small number
of synthetic data sets cannot use MSIN to predict multiple
categories simultaneously, such as SVHN [37] data sets. The vast
majority of unsynthesised data can be trained using the MSIN-S.
Using MSIN-S, both x1 and x2 samples can be trained
simultaneously, allowing the neural network to simultaneously fit
the joint distribution of the two domains. For tasks that cannot be
trained using MSIN-S, MSIN-A is required to train the task. When
training with MSIN-A, the data that is difficult to fit is trained first,
and then the data that is relatively easy to fit is trained. For
example, when we need to train with SVHN [37] and other data
sets at the same time, we need to train the SVHN [37] data set first
and then finetune MSIN on other data sets. Another situation is that
when expanding the category of the network, it is necessary to
maintain the generalisation ability of the existing category and also
to train the data in another domain.

3.5 Multi-sample generative adversarial network

In this section, we will discuss the application of the MSIN
network architecture to GAN, which we call the MSGAN. We want
the generator to be able to simultaneously generate samples from
two different fields in a forward process, and the corresponding
discriminator can simultaneously determine whether the two
samples are true or false. Extending the traditional GAN: the final
layer of the generator and the initial layer of the discriminator are
expanded to two sample domains. The loss function of MSGAN
can be reformulated as

min
G

max
D

V(D, G) = ∑
i = 1

K

αiExi ∼ pdatai
(xi)[log(D(x))]

+ ∑
i = 1

K

κiEzi ∼ pzi
(zi)[log(D(1 − ηiG(zi)))]

(9)

where α is used to balance the discriminator's loss of real data in
different sample domains, κ is used to balance the discriminator's
loss of false data, and η is used to weigh the generator's loss

608 IET Comput. Vis., 2019, Vol. 13 Iss. 6, pp. 605-613
© The Institution of Engineering and Technology 2019



between each sample domain. It can be found in our experiments
Section 4.9 that MSGAN can generate images in different sample
domains.

4Experiments
4.1 Data sets

We performed experiments on the MNIST [38], Fashion-MNIST
[39], CIFAR10 [40], CIFAR100 [40], and SVHN [37] data sets,
respectively. These data sets have approximately the same image
size and the number of samples. We also apply standard
augmentation [13, 15, 41–46]: horizontal flipping and translation
by 4 pixels are adopted in our experiments.

4.1.1 MNIST: It contains 60,000 hand-written digits for training
and 10,000 for testing. The images are collected from 250 writers
and have shapes of 1 × 28 × 28 where 1 denotes one channel.

4.1.2 Fashion-MNIST: It is a data set of images consisting of a
training set of 60,000 examples and a test set of 10,000 examples.
Each example is a 28 × 28 greyscale image, associated with a label
from 10 classes. Fashion-MNIST [39] serves as a direct drop-in
replacement for the original MNIST [38] data set for benchmarking
machine learning algorithms. It shares the same image size and
structure of training and testing splits.

4.1.3 CIFAR: It consists of 60,000 32 × 32 coloured natural scene
images, 10,000 of which are used for testing. Specifically,
CIFAR-10 [40] contains 10 classes, with 5000 training images and
1000 testing images per class, while CIFAR-100 [40] has 100
classes, with 500 training images and 100 testing images for each
class. Channel means are computed and subtracted in pre-
processing.

4.1.4 SVHN: It is a real-world data set obtained from house
numbers in Google Street View images. It consists of 10 classes,
with 73,257 digits for training, 26,032 digits for testing, and
531,131 additional digits. All digits have been resized to 32-by-32
pixels. The task is to classify the central digit into a correct class.
In our experiment, we did not apply additional data sets for
training.

4.2 Training

For comparison purposes, we use the same network architecture
and set the same hyperparameters for all data sets. We use PreAct
ResNet-18 [36] and DenseNet-BC-70 [17] as the basic network
architecture. Unless otherwise stated, PreAct ResNet-18 [36] will
be set as the default basic network architecture. The network
architecture is divided into four blocks, each of which is a residual
block containing two convolutional layers. After each block, the
feature size is halved and the number of channels is doubled.
DenseNet-BC-70 [17] is a network structure that connects all the
front layer information to the subsequent layer. It consists of three
block structures, each of which is followed by a transfer structure
with a pooled layer.

All the networks are trained on two NVIDIA Tesla k80 GPUs
using stochastic gradient descent (SGD). We use a weight decay of

1 × 10−4 and a Nesterov momentum [47] of 0.9 without dampening.
The batch size on each GPU is set to 128 for 200 epochs. The
initial learning rate is set to 0.1 and is divided by 10 at 50 and 75%
of the total number of training epochs. We use (5) as the default
loss function when we do not perform sample domain prediction,
otherwise we use (8) as the loss function. The βi in (5) and (8) are
set to the same value: βi = 1/K, and the large margin values in (3)
and (6) are set to 1.

4.3 Performance comparison of MSIN variations

We compared the performance of MSIN variants using different
initial layers and different final layers on CIFAR-10 [40]. Fig. 3
shows the performance comparison of MSIN-P, MSIN-I1, MSIN-
I3, MSIN-F2, and MSIN-B. It can be found that MSIN-I3 has
higher performance than MSIN-I1, indicating that the initial layers
separated from each other can retain more high-level features that
will not be lost due to the competition of multiple classes.
Compared with MSIN-I1, the performance of MSIN-B is slightly
worse but almost the same, indicating that a few independent initial
layers still maintain almost the same features, and as the number of
layers increases, these features become more and more different.
The MSIN-F2 with more parameters has a better performance in
the initial training phase, but the final generalisation performance
is slightly lower than the MSIN-B. This phenomenon indicates that
the convolution layer is shared at the final layers, which is
conducive to the regularisation of the synthesised label at the loss
layer. It can be seen that the performance of MSIN-P is not normal,
and the average performance is only about 54%. This is due to the
addition of two samples at the input layer of the MSIN, which
causes the two classifiers to confuse their respective samples.
MSIN-B just changed the addition operation of the input layer to
concatenation operation, which effectively avoids the occurrence of
this abnormal phenomenon. 

4.4 MSIN performance on same domain

To demonstrate that MSIN can separate multiple categories
simultaneously in a forward process, we have designed
experiments that can predict multiple categories simultaneously.
We use MSIN-B to implement the experiments in this section. The
training process of the network on the same data set is shown in
Fig. 4. The figure shows the training accuracy of C1 and C2 on the
same data set. The training and test accuracy of C1 and C2 are
basically the same. 

In CIFAR-10 [40] and MNIST [38], MSIN has a good
performance both in training accuracy and testing accuracy. In
general, two samples may have different levels of confusion, so the
test performance of each category should be lower than the original
single-category network. In MNIST [38], the original test error on
PreAct ResNet-18 [36] was 0.8, and on MSIN-B it was 0.4.
Classifying multiple samples at the same time not only does not
degrade the test performance but also increases its performance.
Note that MSIN-B only changes the input layer and output layer on
PreAct ResNet-18 [36]. Their network architecture and parameters
are basically the same. Therefore, this performance improvement is
not a difference in network parameters or architecture. The reason
is that MNIST [38] is a relatively simple task, there are more
common patterns between the samples, thereby reducing the
performance of PreAct ResNet-18 [36] underfitting the data set.

It can be found that the training accuracy of the two samples are
about 97% in CIFAR-100 [40] data set, indicating that there is still
some confusion in the neural network. The first category of the
average test accuracy is 71.9%, the second category of the average
test accuracy is 71.2%. The classification accuracy is almost as
good as the original single-category precision.

However, since SVHN [37] is a special task, each number is
tiled into a picture of a 3 × 3 grid and the discrimination of some
pictures is very low. Each picture in the SVHN [37] has 9 digits,
which causes difficulties for MSIN training. It can be seen from
Fig. 4d that only the training and testing process of C2 is normal,
while the training and testing accuracy of C1 is maintained at about
20%. In the MSIN training process, there is competition between

Fig. 3 MSIN and its variants average test accuracy over multiple samples
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multiple numbers, often resulting in one sample occupying an
absolute advantage, so that two categories cannot be distinguished
at the same time.

4.5 MSIN performance on two domains

We use MSIN-B to train on different data sets to get its
generalisation performance for simultaneous multi-task prediction.
Its training process in different data sets is shown in Fig. 5. The
names of various data sets are abbreviated. For example,
CIFAR-10 [40] is abbreviated as C10. Note that each training task
is trained simultaneously, except for the CIFAR-10 [40] and SVHN
[37] data sets in Fig. 5c. Fig. 5 shows the training and the test
accuracy of the MSIN-B network on various data sets. Each task is
almost unaffected by other tasks during training, which is almost
indistinguishable from training the task alone. 

As described in Section 4.4, MSIN cannot train multiple
samples simultaneously on the SVHN [37] data set, so we use
MSIN-A for training. As can be seen in Fig. 5d, the MSIN is first
trained on the SVHN [37] data set and then the CIFAR-10 [40] data

set are added to train simultaneously. In this way, the network can
maintain high test accuracy for SVHN [37] and avoid the MSIN to
have good generalisation performance only for the samples on
CIFAR-10 [40].

The original category represents the test error of the data set on
PreAct ResNet-18 [36], and the multiple categories represent the
test error of MSIN on different data sets at the same time. The
single class indicates that the MSIN, after training on multiple data
sets, is used to test for errors in one of the data sets.

Table 1 shows the average test error of the MSIN samples that
simultaneously classify multiple different data sets (multiple
category), the single-category test error with the same category as
the input to the MSIN (single category), and the test error of each
data set on PreAct ResNet-18 [36] (original category). It can be
found that the multi-category test error is slightly higher than the
original network test error but slightly lower than the single-
category test error. These small differences are acceptable in the
actual situation. In addition, we can use variants of MSIN to
improve its performance if the computing resources allowed. By
comparing the test errors of multiple categories and single

Fig. 4 MSIN performance on data sets MNIST [38], CIFAR10 [40], CIFAR100 [40], and SVHN [37]. The suffix A in the legend represents the sample
classified by the classifier C1, and the suffix B represents the sample classified by the classifier C2

(a) CIFAR-10 (test A: 93.1%, test B: 92.9%), (b) CIFAR100 (test A: 71.9%, test B: 71.2%), (c) MNIST-10 (test A: 99.6%, test B: 99.6%), (d) SVHN (test A: 19.6%, test B: 96.4%)
 

Fig. 5 MSIN performance on different data sets. The two input samples of the MSIN come from different data sets. The suffix in the legend is a shorthand for
a data set that represents the performance of MSIN on that data set
(a) CIFAR-10 and MNIST, (b) CIFAR100 and MNIST, (c) CIFAR-10 and CIFAR100, (d) CIFAR-10 and SVHN
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categories, it can be shown that the neural network will produce
overfitting for different training processes, and it also shows that
there is strong independence between the two classifiers. 

4.6 MSIN performance on multiple domains

To test the performance of the MSIN on multiple sample domains,
we used four data sets (MNIST [38], Fashion-MNIST [39],
CIFAR10 [40], and CIFAF100 [40]) to train the MSIN. In this
section, DenseNet-BC-70 [17] is used as the basic network
architecture, (5) is used as the loss function. β1 and β2 in (5) is set
to 1, and β3 is set to 0.1.

Fig. 6 shows the performance of the MSIN on a multi-sample
domain. It can be found that the MSIN can separate all the samples
on the four different domains. The performance of the MSIN is
slightly lower when predicting the four sample domains than when
predicting the three sample domains. Compared with the single-
sample inference network, the performance of the MSIN is slightly
declined, but the availability of the MSIN is basically guaranteed. 

4.7 Train multi-channel mixed MSINs

The MSIN-B is used to train multi-channel samples from the
CIFAR-10 [40] data set. We split each sample from CIFAR-10 [40]
into three channels and randomly combine these three channels
into a new sample in each min-batch. We use (5) as the loss
function for this training. The MSIN will be divided into three
classifiers, each of which is responsible for one channel. The entire
training and testing process is shown in Fig. 7. 

In Fig. 7, it can be seen that multiple different channels have a
normal training process, indicating that the MSIN can be
successfully extended to multiple categories. As there are different
degrees of competition between the various channels, the training
error does not decrease to zero. Another reason is that the random
combination of individual samples makes the distribution range of
the data greatly increased. Moreover, there is a large correlation
between the channels of the same data set, the weights are adjusted
by multiple channels, resulting in the network not being overfitted
to any one of the channels. Another conclusion of this experiment
is that the different channels of the sample correspond to different
training and test performances. The second channel of the sample
in CIFAR-10 [40] contributes more to its classification accuracy,
while the first channel contributes less.

4.8 Sample domain prediction using MSIN

When predicting the sample domain, it is necessary to give each
domain a label corresponding to each sample, and K sample
domains correspond to K2 labels. We want each batch to contain an
equal number of samples from different domains, so after assigning
labels to the sample domains, we need to randomise the order of
the samples. This section has the same hyperparameter settings for
MSIN as in Section 4.6. The difference is that the batch size needs
to be set to 32, and the training epochs are changed to 100 because
the order of the samples is randomised so that the batch size
becomes the original K2 times.

Fig. 8 shows the sample domain prediction accuracy of the
MSIN on four different data sets. It can be found that on the
MNIST [38] and Fashion-MNIST [39] data sets, the MSIN can
predict the corresponding sample domain well, and the prediction
accuracy is 100%, while the prediction accuracy on CIFAR-10 [40]
and CIFAR-100 [40] is relatively low, about 90%. The reason for
the analysis may be that CIFAR-10 [40] and CIFAR-100 [40] have
different categories and cannot be constrained by the Lmargin loss in
(8). Better tuning of the hyperparameters of MSIN and its loss
function will result in better performance.

4.9 Multi-sample generation using MSGAN

We extended the GAN [10] architecture to MSGAN to verify its
ability to generate different samples. The architecture of MSGAN
is shown in Table 2. Each linear layer of MSGAN is followed by a
LeakRelu whose negative slope is set to 0.2. The dimension of the

latent variable z is set to 200, and the vector after the generator is
reshaped into a 28 × 28 image. Note that the generator generates
samples of two different domains, respectively. The generated
image is reshaped into a one-dimensional vector as the input to the
discriminator, and its output layer uses two adversarial losses to
determine whether the generated samples are true or false.

We use the Adam [26] method to train MSGAN, its learning
rate is set to 2 × 10−4, and the decay of first-order momentums of
its gradient is set to 0.5 and 0.999, respectively. All of the balance
factors in (9) are set to 1, and the entire training process trains 200
epochs on 2 NVIDIA Titan Xp GPUs with a batch size of 64.

Fig. 9 shows the image generated by MSGAN. It can be found
that MSGAN can simultaneously generate samples from different
sample domains, and handwritten numbers from the MNIST data
set produce different patterns. For example, the handwritten
number 3 and 9 in the figure. Since we are using a one-dimensional
non-convolution neural network, the quality of the image needs to
be further improved. We believe that using a deeper convolutional
neural network and better adjusting the balance factor in (9) can
further improve the quality of image generation, and we will
further explore MSGAN in future work.

5Discussion
5.1 Training MSIN with random label

In order to study whether the MSIN network learns the joint or
independent distribution of multiple samples, we have set a
classifier in MSIN-B to be a random label. This indicates that the
MSIN classifier has some confusion about its input samples.
Fig. 10 shows the training of the MSIN network with a random
label on CIFAR-10 [40]. It can be found that the training and test
accuracy of the classifier C2 with a random label is all about 10%,
i.e. the classifier is in a state of random guessing. The classifier C1

training process is relatively normal. The accuracy of the single
category is about 3.5% which is lower than multiple categories,
indicating that the classifiers in the MSIN are not completely
independent of each other, but still have higher independence.
There is greater independence between MSIN's classifiers, which
explains to a certain extent why MSIN is effective when classifying
multiple samples.

5.2 Effect of the value of λ on MSIN performance

We change the value of λ in (5) to a random value in each min-
batch to test whether the MSIN training process is stable, or
whether alternate training can be used on the MSIN. The training
process for this network is shown in Fig. 11. Compared with
MSIN, both training and test accuracy have declined. It can be seen
that the training error of MSIN is not close to 0, the accuracy of
multi-category test has a slight decrease, and the accuracy of single
category is seriously reduced. The single-category test accuracy
has a large jitter and is even more unstable than the MSIN with a
random label. When the value of a is close to zero, the feedback
signal of the corresponding classifier approaches zero, causing the
classifier to lose competitiveness. Therefore, using alternate
training in MSIN will not be conducive to performance
improvement.

6Conclusions
The MSIN proved the interesting fact that the neural network can
correctly predict multiple samples at the same time, which is
worthy of theoretical research. MSIN and its variants can classify
multiple samples simultaneously in one forward process. Our
experiments show that this method can effectively separate
multiple categories while avoiding the confusion of multiple
samples. Since the MSIN can predict multiple samples without
adding parameters, this can significantly reduce the forward
process of the neural network, thereby reducing inference time and
hardware consumption. The properties of MSIN can be used to
solve the category expansion problem. It can not only make the
extended network have better generalisation ability for new
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categories but also can maintain the prediction performance of
existing categories.

On the basis of the MSIN architecture, there are lots of work to
do: we can try to maximise the diversity of the final block to
improve the prediction accuracy of the multiple categories, such as
the use of different network structures or different blocks. The

Table 1 MSIN test error on different data sets
C10 MNIST C100 MNIST C10 C100 C10 SVHN

original category 5.8 0.8 25.8 0.8 5.8 25.8 5.8 3.7
multiple category 6.2 0.8 26.5 0.8 6.8 31.4 8.8 3.9
single category 6.3 0.8 26.7 0.8 7 32.1 9.1 3.9

 

Fig. 6 Performance of the MSIN on MNIST (M), Fashion-MNIST (F),
CIFAR-10 (C10) and CIFAR-100 (C100) data sets. The suffix in the legend
is shorthand for a data set that represents the performance of MSIN on that
data set

 

Fig. 7 MSIN is used to train multi-channel samples from the CIFAR-10
data set. The suffixes A, B, and C in the legend represent the first, second,
and third channels from different samples. The word ‘test’ without suffixes
represents a sample from the CIFAR-10 data set

 

Fig. 8 Performance of the MSIN on sample domain prediction. The suffix
in the legend is a shorthand for a data set that represents the performance
of MSIN on that data set

 

Table 2 MSGAN architecture
Model Generator Discriminator
Shared Liner (z, 128) Liner(28 × 28 × 2512)

Liner (128, 256) Liner(512, 256)
Liner (256, 512)
Liner (512, 1024)

Final {Liner (1024, 28 × 28)} × 2 {Liner(256, 1), sigmoid()} × 2
 

Fig. 9 MSGAN is used to generate samples from the MNIST (first row)
and Fashion-MNIST (second row) data sets, respectively

 

Fig. 10 MSIN performance on CIFAR-10 with a classifier set to random
labels. The suffix R in the legend represents the samples that is set as
random labels, and C10 represents the normal samples

 

Fig. 11 Effect of the value of λ on MSIN performance. The suffix A in the
legend represents the sample classified by the classifier C1, and the suffix B
represents the sample classified by the classifier C2
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ensemble training approach can also be used that allows for the
addition of sample channels at the initial block. For example, use
an odd number of final layers to vote on the final prediction. These
are some of the most interesting things to do, including using this
architecture in a MSGAN. The generator can be made to generate
different patterns of samples in a forward process, and we will
leave this work for the future.
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