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Abstract—Wireless traffic prediction has drawn increasing
research interests as it can provide guidance to the network
optimization. With the predicted information, one can preassign
the resources on demand and perform network congestion control
adaptively. The network efficiency is therefore enhanced. Howev-
er, the wireless traffic prediction in the context of mobile scenario,
such as Internet of Vehicles (IoVs), is still a challenge issue. The
mobile nature of devices, which dynamically changes the topology
of network, would brings difficulties to the prediction. This paper
focuses on the deep learning based wireless traffic prediction in
the IoVs scenario. We first propose a novel method to match
up the movement- and communication-behavior of users, by
merging two independent datasets on the trajectories of vehicles
and communication traffic volumes together. Then a novel STeP-
UNet is proposed, in which the SpatioTemporal Partial (STeP)
Convolutional Neural Network module is embedded to capture
cross-domain features of the wireless traffic pattern, and the UNet
structure is utilized to realize the skipping connection from front
layer to back layer to fuse different resolutions. Experimental
results confirms the promising performance of the proposed
model, where 4%∼8% performance improvement over other
benchmark methods can be achieved.

I. INTRODUCTION

Wireless traffic prediction plays an important role in devel-
oping a more intelligent and greener communication networks
[1]. By gathering and analyzing the historical data, one can
predict the future trend of wireless traffic in the network and
preassign the necessary resources on demands. The various
Quality of Service (QoS) from users can be satisfied with high
resource utilizing efficiency [2], [3].

The accurate wireless traffic prediction relies on the un-
derstanding of the communication behaviors inherit in the
historical data, where the spatiotemporal distribution of com-
munication demands is expected to be captured. Deep learning
[4]–[7], which is originally used in the areas such as Computer
Vision (CV) and Natural Language Processing (NLP), is
considered to be a promising tool for wireless traffic prediction
[8]–[10]. For instance, the recurrent neural network (RNN)
based framework was proposed in [8] to model the non-
linear temporal dependency of the wireless traffic. The authors
in [9] proposed to jointly model the spatial and temporal
dependencies of wireless traffic, through mixture deep Long
Short Term Memory (LSTM) model. In [11], a hybrid deep
learning framework which explored the combination of CNN

and LSTM (ConvLSTM) to capture the spatial and temporal
dependencies of traffic, is reported. Moreover, [12] proposed
to predict the BS traffic volumes based on the integration
of K-means clustering and wavelet decomposition methods,
through digging the spatiotemporal information of cellular
traffic flow. [13] investigated the spatial and temporal de-
pendence of wireless traffic among different cells, where the
spatiotemporal DenseNet (STDenseNet) [7] based prediction
framework is designed. [1] conducted clustering on different
Point of Interest (POI) modes, and then uses transfer learning
in different communication traffic patterns to improve the
prediction accuracy.

Though promising methods have been reported in literatures
for communication traffic prediction in traditional wireless
network, they are hardly applied to the IoVs scenario directly.
In IoVs, the topology of network would change dynamically
owning to the movement of the users (now the vehicles). The
spatiotemporal distribution of communication traffic is there-
fore impacted by not only the communication demands, but
also the movement behaviors of the vehicles. The correlation
between them should be considered, as it is critical to the
performance of prediction. In fact, there already exists several
research work which consider the vehicle traffic [14], [15].
For example, [14] uses three residual networks to model the
closeness, period and trend of the vehicle traffic, where the
weather conditions and daily events are also padded as the
external features. [15] considered the combination of ConvPlus
module and SemanticPlus module, where the former captures
long-range spatial dependence and the latter is employed to
lower the impacts of location function to the crowd movement.
However, to our best knowledge, few efforts have been done
to consider the joint prediction of vehicle traffic and wireless
communication traffic, in the context of IoVs case.

In this paper, we propose a novel framework for wireless
traffic prediction in IoVs, where the movement behavior of
vehicles, as well as the communication behavior of users
are jointly considered. To achieve that, we first propose a
pattern matching approach to merge the wireless traffic dataset
with the real vehicle trajectories, The new four dimensional
dataset containing the amount and types of wireless data
traffic, as well as the vehicle coordinates per each time stamp
can be obtained through the proposed approach. With the
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dataset in hand, we further design a flexible and embeddable
SpatioTemporal Partial (STeP) convolutional network module
to accurately model the traffic data of the IoVs with a time
series relationship. Moreover, the proposed STeP modules is
further embedded into Unet [16] to perform the spatiotemporal
traffic prediction. Experimental results confirms the promising
performance of the proposed method.

The remaining of the paper is organized as follows. In
Section II, the data process modeling methodology will be in-
troduced. The STeP-UNet of the proposed method is included
in Section III. Section IV introduces simulation result of the
proposed method. Finally, we conclude the paper in Section
V.

II. DATA MATCHING AND PROCESSING

A. Dataset Merging

User’s Communication Data Vehicle Trajectory Data

Matching

Fig. 1. The user’s communication data are used to match the vehicle trajectory
data.

As aforementioned, though there are datasets tracking the
trajectories of vehicles [17], as well as those for communica-
tion behaviors [18] separately, few works have been done to
merge them for wireless data traffic prediction in the context
of IoVs. As a result, the first mission in this work is to
match up the dataset containing the location information of
the vehicle with that for communication traffic. Denoting these
two datasets as V and U , respectively, they can both be
expressed as the three dimensional tensors. To be specific,
V = (N,T, P ) records all location information of N vehicles
in T time stamps, where P contains the location information
of each vehicle (such as latitude and longitude information).
On the other hand, the communication traffic dataset U =
(N ′, T ′, S) provides S types of communication traffic of N ′

users in T ′ time stamps. Apparently, the main focus here is
the match up S with P , where the relationships between N
and N ′, as well as T and T ′ should be firstly established as:

N = Ψ(N ′), T = Φ(Ψ(T ′)), (1)

where Ψ(·) function gives the correspondence between the
vehicles and the users. The intuition here is that we can treat
the N users in U is the passengers scattered in the N ′ vehicles.
Φ(·) is the scaling function which forces T to be in the same
time scale of T ′. With the above two equations in hand, the
matching up of these two datasets can be formulated as:

MS = (Ψ(Φ(N ′)),Ψ(Φ(T ′)), P,Ψ(Φ(S)))

= (N,T, P,Ψ(Φ(S))).
(2)

To better illustrate the above process, Fig. 1 is provided
to show more details about the mapping from user com-
munication data to vehicle trajectory data. Note that for
easy understanding, here we consider the special case when
N = N ′. In such a case, Φ(·) degrades to the identity mapping
function to bind each vehicle with one certain user, where the
communication behavior of each user during the movement of
the vehicle can be readily obtained.

B. Traffic Map Division and Data Processing

20 24 32 19 15

23 24 26 26 23

25 28 32 27 24

21 25 27 26 21

18 20 24 23 17

Map Grid

Communication Traffic

Vehicle Traffic

Fig. 2. Dividing the city map and generating the matrix. The map is covered
by H×W grids, and the total traffic in each grid are calculated by aggregation
operation.

With the merged dataset MS in hand, we then focus on
tracking the dynamics of wireless data traffic based on the
vehicle trajectory in the citywide scale. To be specific, we in
this work take the taxi trajectory collected in Beijing City as
the basis dataset [17], from which the maximum and minimum
latitudes/longitudes can be obtained to determine the moving
area of vehicles. As illustrated in Fig. 2 we first divide the
corresponding citywide map into H×W grids with the height
and width of each grid denoted as GH and GW , respectively.
Then in each grid, the amount of wireless traffic during
the tth time slot are calculated independently for different
communication types, through aggregation the corresponding
wireless flows from the vehicles currently positioned within
that grid. Such aggregation operation is illustrated in the
following Definition 1 [14].

Definition 1: Let P be a collection of trajectories at the tth

time slot. For a Grid(i, j) that lies at the ith row and the jth

column, the volume of the traffic at the time slot t are defined
as

xi,jt =
∑
Tr∈P

|{k ≥ 1|gk−1 /∈ (i, j) ∧ gk ∈ (i, j)}| (3)

where Tr : g1 → g2 → · · · → gTr is the trajectory from P .
gk denotes the coordinates of one target point in the citywide
map. | · | is defined as the cardinality of trajectories set. By
performing such aggregation in each grid per time slot, a set of
wireless traffic related tensor {xi,jt } with dimension T×H×W
can be finally obtained. The entire process is concluded in
Algorithm 1, where {LTmax, LTmin} and {LNmax, LNmin}
represents the maximum/minimum latitude and longitude of
the city, respectively.

Through Algorithm 1, the time series of vehicle traffic and
its counterpart wireless data traffic can be obtained, which is

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on July 09,2022 at 11:48:02 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Matching algorithm between vehicle traffic data and
communication traffic data.
Require: V,U,H,W

1: Compute T, S,GH , GW , LTmax, LTmin, LNmax, LNmin ac-
cording by V and U

2: Initial Grid = Zero(shape = [T,X, Y, S])
3: for i = 1→ T do
4: Carpos = V i

5: for j = 1→ N do
6: Mappos = Carjpos
7: if thenLTmax > Mappos ≥ LTmax

8: or LNmax > Mappos ≥ LNmin

9: PLT =
MapLT

pos−LTmin

GH

10: PLN =
MapLN

pos−LNmin

GW

11: Grid[i, PLT , PLN ]Pos+ = V [j, i]
12: Grid[i, PLT , PLN ]U+ = Φ(Ψ(U [j, i]))
13: end if
14: end for
15: end for

a 4-dimensional tensor illustrating the spatiotemporal distribu-
tion of the wireless traffic volume with different types. With
that the fundamental network architecture can be designed to
model and predict the traffic patterns.

III. STEP-UNET

A. Review of ResNet and DenseNet Module

To better understanding the proposed STeP module, we
would quickly go through the basic idea of ResNet and
DenseNet. Denoting the features of the input and the lth layer
of the network as X0 and Xl, respectively. The structure of
ResNet can be defined as

Xl = Xl + f(Xl−1), (4)

where f(·) is the standard composite function [6]. It contains
the successive operations like Convolution, Batch Normaliza-
tion and Rectified Linear Unit [19]–[21]. Apparently, Xl in
Eq. (4) is updated recursively, in which all the features are
treated as the units through f(·) and then aggregated together
through summation.

On the other hand, the basic structure of DenseNet is
expressed as:

Xl = [Xl−1, f(Xl−1)], (5)

where [·, ·] represents the concatenation operation on the
features set. It can be observed that Eq. (5) is quite similar to
Eq. (4) except that the summation among features is replaced
by the concatenation. Both networks inherits the advantages
of achieving efficient gradients in backpropagation by fusing
the features of the front and back layers. However, they also
have drawbacks. For instance, ResNet adds all the front layer
features to the back layer and hence has a higher amount
of parameters. While for the DenseNet, it merges only the
front layer features but without fusing them. It may reduce the
complexity but on the other hand drag down the performance.

In order to inherit the advantages of both network and make
it suitable for traffic prediction tasks, the STeP module is

proposed in this paper. The basic idea is to divide the features
in each layer into multiple groups and appropriately apply
summation or concatenation operations in different groups. In
this way a lightweight variant network incorporating ResNet
and DenseNet can be achieved. The details of such a network
module is described in subsection III-B.

B. STeP-Module

In this subsection, we give the STeP-Module in details
[21], [22]. As aforementioned, for a deep learning network
we can divide the feature channels into G groups. Denoting
the features in the jth(1 ≤ j ≤ G) group of layer l as gjl , the
features of layer l can be defined as

Xl = [g1l , · · · , gGl ], (6)

Consequently, the block structure of STeP-Module can be
defined as

Xl = Xl−1 + f(gj−1l−1 ). (7)

Fig. 3 illustrates the structure of one single layer of STeP-
Module, which is divided into a number of 3 groups [22]. The
number of features of each traffic pattern will be amplified by
group convolution to obtain G group features [g1l , · · · , gGl ]1.
All group features can then be regarded as the input X0 in
the STeP-Module. The purpose of dividing multiple groups
is to capture the different traffic patterns in the IoVs, with
each group convolution are used to model one corresponding
pattern, respectively. STeP-Module makes full use of the
advantages of ResNet and DenseNet, so that the gradient can
be efficiently back-propagated. Moreover, with the proposed
module one can independently apply summation or concatena-
tion operations for different groups, according to the different
types of pattern it deals with. It helps reduce the amount
of parameters of the whole model and can potentially reach
a good trade-off between complexity and performance. It is
also noted that though each group only represents one of the
multiple traffic patterns. The STeP-Module can still fusion and
learn each traffic pattern sequentially as the layers go deeper.
It reveals that STeP-Module can model the traffic data with
spatiotemporal relationship well.

Fig. 3. The structure of STeP-Module [22].

1In default setup, G = S
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Fig. 4. The Architecture of STeP-UNet.

C. STeP-UNet

In this subsection, we consider to embed the STeP-Module
into the UNet architecture to setup the final learning model for
prediction. Fig. 4 illustrates the architecture of the proposed
STeP-UNet, where each node in UNet is compromised by the
STeP-Module. It can be easily found that STeP-UNet has a
large number of skip connections from the architecture level
to the node level. Such characteristic enables the model to
efficiently learn the timing relationship of traffic data and
thereby avoid the problem of gradient dispersion.

As for the parameter setting of the model, the summation
operations are used for overlapping channels and the concate-
nation operations are used for the redundant channels. These
operations can reduce network parameters, which can be ana-
lyzed from two aspects. On the one hand, STeP-Module uses
3× 3 and 1× 1 convolution sequentially in the amplification
function. The number of the group channels are amplified to C

4
using 3×3 convolution, and then there are amplified to C using
1× 1 convolution. The number of parameters of 1× 1 convo-
lution are much less than that of 3 × 3 convolution. In other
words, the network parameters will decrease with the increase
of the number of the group compared with other networks.
On the other hand, unlike STResNet and STDenseNet that
use multiple ResNet or DenseNet Module to capture multiple
traffic patterns separately, STeP-Module employ one single
module for multi-pattern data learning. That is because STeP-
Module uses group convolution to separately model multiple
patterns, where each mode corresponds to only one group
and each group sequentially performs partial-to-whole feature
fusion [22]. Based on these characteristics, STeP-UNet can
greatly reduce the amount of network parameters and speed
up the network training. It should also be noted that the
STeP-Module can be embedded in any network architecture
to achieve efficient integration of features. While the purpose
of choosing UNet architecture in this work is just to achieve a
direct skip connection from the front layer to the back layer.

IV. EXPERIMENTS AND DISCUSSIONS

A. Datasets

We use two different datasets to model the moving trend of
the vehicles and the communication traffic of users, respec-
tively. The vehicle traffic dataset is from [17], which contains
the GPS logs of the taxi cars in Beijing City. While the end

user communication dataset is from the user communication
data in Milan, Italy and the BS traffic data from some city in
China. The details of the corresponding datasets are described
as follows.

Vehicle Traffic: This dataset contains the GPS trajectories
of 10,357 taxis during the period of 02/02/2008 to 02/08/2008
within Beijing [17]. The total number of points in this dataset
is about 15 million and the total distance of the trajectories
reaches to 9 million kilometers.

Cellular Traffic: Inspired by [1], we employ the cellular
traffic dataset from [18], which is provided by Telecom Italia.
The dataset is collected from 11/01/2013 to 01/01/2014 with a
temporal interval of 10 minutes over the whole city of Milan
(62 days, 300 million records, about 19 GB).

BS Traffic: The real communication traffic data is collected
from all BS in a certain city in China, including up-link and
down-link communication traffic data. The dataset is collected
from 08/06/2019 to 11/07/2019 with a temporal interval of 60
minutes over the whole city (94 days, 51.9 million records,
about 17.1 GB).

The traffic data are comprised of three major components
modeling temporal closeness, period, trend, respectively. With
Definitions 1, the traffic data of the city during one each time
slot can be first converted into a tensor, similar to that of
a multi-channel image [21]. The 6-channel Vehicle-Cellular
traffic tensors (Vehicle Traffic, In-SMS, Out-SMS, In-Call,
Out-Call, Internet) and 3-channel Vehicle-BS traffic tensors
(Vehicle Traffic, Up-Link, Down-Link) are fed into the first
three components network separately to model three temporal
properties: closeness, period and trend. Note that these three
component networks in the proposed UNet [16] inherit the
same structure thanks to the STeP-Module embedded. Finally,
with the help of Sigmoid function S(x) = 1

1+e−x , the
aggregated features are maped into the values within [0,1]. It
yields a faster convergence than the standard logistic function
in the process of backpropagation learning.

B. Settings

Dataset Settings: For the traffic matching proccess, the
whole city is split into 32×32 grids. Then to get the input
data ready, we further perform normalization on the traffic
volume through the widely adopted Min-max normalization
approach [1]. For functions Ψ and Φ, the truncation operation
is first taken, and then the identity mapping is used to match
the data. Finally, each vehicle trajectory corresponds to a
unique communication process. During prediction stage, the
prediction value are denormalized and used for evaluation.
Note that to reserve not only the temporal correlation but
also the spatial one in the original dataset, the sliding window
method is employed when sampling. 80% of the samples are
randomly chosen for training while the remaining is left for
testing [21].

Loss Function: The proposed deep learning model can be
easily trained through minimizing the Frobenius norm between
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TABLE I
TRAFFIC PREDICTION PERFORMANCE COMPARISON BETWEEN

STEP-UNET, STRESNET AND STDENSENET.

Dataset Model Params (M) MAE RMSE R2

Vehicle-Cellular
STResNet 0.85 0.09 0.24 72.54
STDenseNet 0.78 0.10 0.25 72.05
STeP-UNet 0.75 0.07 0.23 75.85

Vehicle-BS
STResNet 0.85 0.56 1.56 94.50
STDenseNet 0.78 0.87 2.19 88.76
STeP-UNet 0.75 0.55 1.55 94.52

the predicted value and the ground truth value of the tth slot
[13]

L(θ) = argmin
θ

||Xt − X̃t||2F , (8)

where Xt and X̃t denotes the true traffic map and the
prediction one in time slot t, respectively.

Hyperparameter Settings: The STeP-UNet is trained using
one NVIDIA Tesla V100 GPU under the Pytorch framework.
The well known Adam optimization method is employed for
gradient descent, given the initial learning rate 0.001 [23]. We
choose the hyperparameters according to that of the optimal
model examined on the validation set.

Network Settings: For the proposed STeP-UNet, we set
the initial number of convolution channels to be 4G, where
G denotes the number of traffic types and equals to 6 in
this work. Moreover, for performance comparison we also
exam two other competitive schemes, namely, STResNet and
STDenseNet with the similar network settings as that in [21].
More details can be found therein.

C. Performance

We compared the performance of STeP-UNet, STResNet
and STDenseNet on the Vehicle-Cellular and Vehicle-BS
datasets. The results are concluded in Table I. It can be found
that for different indicators, such as Params (the parameters is
abbreviated to Params) MAE, RMSE and R2, STeP-UNet has
shown good generalization performance on these indicators.

On the Vehicle-Cellular dataset, STeP-UNet achieves lowest
MAE and RMSE compare to STResNet and STDenseNet.
In terms of MAE metrics, the performance of STeP-UNet
has improved significantly. In terms of RMSE metrics, STeP-
UNet has 4% and 8% performance improvements compared
to STResNet and STDenseNet.

The proposed STeP-UNet also performs best on the Vehicle-
BS dataset. The reason lies in that the STeP module allows
the network to capture the information of temporal and spatial
domains more effectively, especially in the case when the
feature size is large. Moreover, the UNet structure facilitates
the sharing of parameters among multiple traffic patterns,
which again confirms the promising performance of the pro-
posed model in joint prediction of both communication and
movement behaviors.

D. Visualization and Analysis

Fig. 5 and Fig. 6 depict the predictions of the vehicle
traffic and communication traffic from the perspective of

Vehicle-Flow Internet

In-SMS-Flow Out-SMS-Flow

In-Call-Flow Out-Call-Flow

Fig. 5. Spatial pattern of Vehicle-Cellular traffic prediction results.

spatial and temporal domain, respectively. It can be seen from
Fig. 5 that the vehicle traffic and its communication traffic
pattern can be well matched. It generally obeys the rule that
communication traffic increases with vehicle traffic, but there
may be exceptions in some areas. For example, the city center.
Fig. 6 also shows the diversity of different traffic patterns, but
they are all positively correlated with vehicle traffic.

Fig. 6 describes the time-varying relationship of various
traffic patterns. Note that different types of traffic have d-
ifferent magnitudes, but they almost have the same timing
relationship. As can be seen from the figure, although there
are some local disturbances, STeP-UNet can better predict the
traffic pattern in the IoVs scenario.

V. CONCLUSIONS

In this paper, we studied the traffic prediction in the IoVs
scenario. In order to collect data from the IoVs scenario, a
traffic matching algorithm was proposed to match the vehicle
traffic with the real communication traffic, where the statistical
analysis and modeling of the vehicle traffic was carried out on
a citywide scale. In order to better predict various traffic pat-
terns, the STeP-Module based on spatiotemporal relationship
is used. This module models each traffic pattern into a group,
and each group can perform partial-to-whole feature fusion
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Vehicle-Flow Internet

In-SMS-Flow Out-SMS-Flow

In-Call-Flow Out-Call-Flow

Fig. 6. Temporal pattern of Vehicle-Cellular traffic prediction results.

through expansion operation to predict multiple traffic patterns
simultaneously. Furthermore, the STeP-Module is embedded
into UNet to realize efficient capture of spatiotemporal rela-
tionship of traffic data, thereby alleviate the gradient dispersion
problem. Experimental results have proved that STeP-UNet
can not only capture a variety of traffic patterns, but also
precisely predict the traffic volume in the IoVs scenario.

ACKNOWLEDGMENT

This work is supported in part by the Project of Interna-
tional Cooperation and Exchanges NSFC under Grant No.
61860206005, the National Natural Science Foundation of
China under Grant No. 61971270, the Major Scientific and
Technological Innovation Project of Shandong Province under
Grant No. 2020CXGC010108, and the Shandong Provincial
Natural Science Foundation (Grant No.ZR2019QF016).

REFERENCES

[1] C. Zhang, H. Zhang, J. Qiao, D. Yuan, and M. Zhang, “Deep transfer
learning for intelligent cellular traffic prediction based on cross-domain
big data,” IEEE Journal on Selected Areas in Communications, vol. 37,
no. 6, pp. 1389–1401, 2019.

[2] M. Noor-A-Rahim, Z. Liu, H. Lee, G. G. M. N. Ali, D. Pesch, and
P. Xiao, “A survey on resource allocation in vehicular networks,” IEEE
Transactions on Intelligent Transportation Systems, pp. 1–21, 2020.

[3] H. Peng and X. Shen, “Deep reinforcement learning based resource
management for multi-access edge computing in vehicular networks,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 2416–2428, 2020.

[4] Y. Lecun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2323, 1998.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 770–778.

[7] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected convolu-
tional networks,” in CVPR, 2016.

[8] J. T. Connor, R. D. Martin, and L. E. Atlas, “Recurrent neural net-
works and robust time series prediction,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 240–254, 1994.

[9] R. Yu, Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu, “Deep learning:
A generic approach for extreme condition traffic forecasting,” in Pro-
ceedings of the 2017 SIAM international Conference on Data Mining.
SIAM, 2017, pp. 777–785.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-
c. Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in neural information processing
systems, 2015, pp. 802–810.

[12] X. Chen, Y. Jin, S. Qiang, W. Hu, and K. Jiang, “Analyzing and modeling
spatio-temporal dependence of cellular traffic at city scale,” in 2015
IEEE International Conference on Communications (ICC), 2015, pp.
3585–3591.

[13] C. Zhang, H. Zhang, D. Yuan, and M. Zhang, “Citywide cellular traffic
prediction based on densely connected convolutional neural networks,”
IEEE Communications Letters, vol. 22, no. 8, pp. 1656–1659, 2018.

[14] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proceeding of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17), November 2016.

[15] Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin, “Deepstn+: Context-aware
spatial-temporal neural network for crowd flow prediction in metropo-
lis,” in Proceeding of the Thirty-First AAAI Conference on Artificial
Intelligence (AAAI-17), 2019.

[16] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing
and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351.
Springer, 2015, pp. 234–241.

[17] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2011, pp. 316–324.

[18] G. Barlacchi, G. Barlacchi, R. Larcher, and A. Casella, “A multi-source
dataset of urban life in the city of milan and the province of trentino,”
Scientific Data, pp. 2052–4463, 2015.

[19] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML, 2015,
pp. 448–456.

[20] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in International Conference on Artificial Intelligence and
Statistics, 2012.

[21] L. Zhai, Y. Yang, S. Song, S. Ma, X. Zhu, and F. Yang, “Self-
supervision spatiotemporal part-whole convolutional neural network for
traffic prediction,” Physica A: Statistical Mechanics and its Applications,
vol. 579, p. 126141, 2021.

[22] D. Liang, F. Yang, T. Zhang, J. Tian, and P. Yang, “Wpnets and pwnets:
From the perspective of channel fusion,” IEEE Access, vol. 6, pp.
34 226–34 236, 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on July 09,2022 at 11:48:02 UTC from IEEE Xplore.  Restrictions apply. 


